期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
采用DETR与先验知识融合的输电线路螺栓缺陷检测方法
被引量:
2
1
作者
李刚
张运涛
+1 位作者
汪文凯
张东阳
《图学学报》
CSCD
北大核心
2023年第3期438-447,共10页
为了解决深度学习模型无法学习螺栓目标的先验知识、仅通过视觉特征难以快速准确定位其缺陷以及螺栓缺陷样本数量有限、类别不平衡的问题,提出了将深度学习模型与螺栓先验知识相结合的方法。选取端到端目标检测(DETR)为基线模型,设计并...
为了解决深度学习模型无法学习螺栓目标的先验知识、仅通过视觉特征难以快速准确定位其缺陷以及螺栓缺陷样本数量有限、类别不平衡的问题,提出了将深度学习模型与螺栓先验知识相结合的方法。选取端到端目标检测(DETR)为基线模型,设计并实现了一种采用DETR与先验知识融合的改进DETR模型。首先,利用视觉-知识注意力模块将螺栓图像的视觉特征与螺栓先验知识有机融合,获得螺栓对应的增强视觉特征;然后,将增强视觉特征送入基于Transformer编码-解码结构的DETR模型框架中对螺栓目标进行识别与分类;最后,针对螺栓危急缺陷样本少及样本不平衡的问题,引入类增量学习损失函数(CILLF)来增强模型的鉴别能力,缓解螺栓缺陷样本间长尾分布问题。仿真实验结果表明:改进DETR模型在输电线路螺栓缺陷样本上的mAP相较于基线模型DETR提升了2.8个百分点;相较于主流Faster R-CNN,YOLOv5l模型,改进DETR模型在长尾分布下螺栓缺陷样本少的类别图像上的检测效果提升尤为显著。
展开更多
关键词
螺栓缺陷检测
TRANSFORMER
DETR
先验知识
增强视觉特征
类增量学习损失函数
下载PDF
职称材料
题名
采用DETR与先验知识融合的输电线路螺栓缺陷检测方法
被引量:
2
1
作者
李刚
张运涛
汪文凯
张东阳
机构
华北电力大学计算机系
复杂能源系统智能计算教育部工程研究中心
出处
《图学学报》
CSCD
北大核心
2023年第3期438-447,共10页
基金
国家自然科学基金项目(51407076)
中央高校基本科研业务费专项资金项目(2020MS119)。
文摘
为了解决深度学习模型无法学习螺栓目标的先验知识、仅通过视觉特征难以快速准确定位其缺陷以及螺栓缺陷样本数量有限、类别不平衡的问题,提出了将深度学习模型与螺栓先验知识相结合的方法。选取端到端目标检测(DETR)为基线模型,设计并实现了一种采用DETR与先验知识融合的改进DETR模型。首先,利用视觉-知识注意力模块将螺栓图像的视觉特征与螺栓先验知识有机融合,获得螺栓对应的增强视觉特征;然后,将增强视觉特征送入基于Transformer编码-解码结构的DETR模型框架中对螺栓目标进行识别与分类;最后,针对螺栓危急缺陷样本少及样本不平衡的问题,引入类增量学习损失函数(CILLF)来增强模型的鉴别能力,缓解螺栓缺陷样本间长尾分布问题。仿真实验结果表明:改进DETR模型在输电线路螺栓缺陷样本上的mAP相较于基线模型DETR提升了2.8个百分点;相较于主流Faster R-CNN,YOLOv5l模型,改进DETR模型在长尾分布下螺栓缺陷样本少的类别图像上的检测效果提升尤为显著。
关键词
螺栓缺陷检测
TRANSFORMER
DETR
先验知识
增强视觉特征
类增量学习损失函数
Keywords
bolt defect detection
Transformer
DETR
prior knowledge
augmented visual features
incremental learning-like loss function
分类号
TP391 [自动化与计算机技术—计算机应用技术]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
采用DETR与先验知识融合的输电线路螺栓缺陷检测方法
李刚
张运涛
汪文凯
张东阳
《图学学报》
CSCD
北大核心
2023
2
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部