为了解决空间数据流中任意形状簇的聚类问题,提出了一种基于密度的空间数据流在线聚类算法(On-line density-based clustering algorithm for spatial data stream,OLDStream),该算法在先前聚类结果上聚类增量空间数据,仅对新增空间点...为了解决空间数据流中任意形状簇的聚类问题,提出了一种基于密度的空间数据流在线聚类算法(On-line density-based clustering algorithm for spatial data stream,OLDStream),该算法在先前聚类结果上聚类增量空间数据,仅对新增空间点及其满足核心点条件的邻域数据做局部聚类更新,降低聚类更新的时间复杂度,实现对空间数据流的在线聚类.OLDStream算法具有快速处理大规模空间数据流、实时获取全局任意形状的聚类簇结果、对数据流的输入顺序不敏感、并能发现孤立点数据等优势.在真实数据和合成数据上的综合实验验证了算法的聚类效果、高效率性和较高的可伸缩性,同时实验结果的统计分析显示仅有4%的空间点消耗最坏运行时间,对每个空间点的平均聚类时间约为0.033ms.展开更多
为解决倾斜分布的数据流聚类这一难题,提出了时态密度概念,给出其度量,揭示了其包括可增量计算在内的一系列数学性质;设计了时态密度树结构,提高了聚类时的存储和检索效率;设计了能够以实时或异步方式捕捉数据倾斜分布的数据流时态特征...为解决倾斜分布的数据流聚类这一难题,提出了时态密度概念,给出其度量,揭示了其包括可增量计算在内的一系列数学性质;设计了时态密度树结构,提高了聚类时的存储和检索效率;设计了能够以实时或异步方式捕捉数据倾斜分布的数据流时态特征的聚类算法TDCA(temporal density based clustering algorithm),其时间复杂度为O(c×m×lgm).实验结果表明,该算法不仅有较强的功能,而且具有较好的规模可伸缩性.展开更多
分析分布式数据流聚类算法的基本框架结构,针对CluStream算法对非球形聚类效果不佳提出一种基于密度和中心点的分布式数据流聚类算法DDCS-Clustering(Distributed Density and Centers Stream Clustering)。该算法应用密度、中心点与衰...分析分布式数据流聚类算法的基本框架结构,针对CluStream算法对非球形聚类效果不佳提出一种基于密度和中心点的分布式数据流聚类算法DDCS-Clustering(Distributed Density and Centers Stream Clustering)。该算法应用密度、中心点与衰减时间窗口,在分布式环境下对数据流进行聚类。实验结果表明,DDCS-Clustering算法具有较高的聚类质量与较低的通信代价。展开更多
文摘为了解决空间数据流中任意形状簇的聚类问题,提出了一种基于密度的空间数据流在线聚类算法(On-line density-based clustering algorithm for spatial data stream,OLDStream),该算法在先前聚类结果上聚类增量空间数据,仅对新增空间点及其满足核心点条件的邻域数据做局部聚类更新,降低聚类更新的时间复杂度,实现对空间数据流的在线聚类.OLDStream算法具有快速处理大规模空间数据流、实时获取全局任意形状的聚类簇结果、对数据流的输入顺序不敏感、并能发现孤立点数据等优势.在真实数据和合成数据上的综合实验验证了算法的聚类效果、高效率性和较高的可伸缩性,同时实验结果的统计分析显示仅有4%的空间点消耗最坏运行时间,对每个空间点的平均聚类时间约为0.033ms.
文摘为解决倾斜分布的数据流聚类这一难题,提出了时态密度概念,给出其度量,揭示了其包括可增量计算在内的一系列数学性质;设计了时态密度树结构,提高了聚类时的存储和检索效率;设计了能够以实时或异步方式捕捉数据倾斜分布的数据流时态特征的聚类算法TDCA(temporal density based clustering algorithm),其时间复杂度为O(c×m×lgm).实验结果表明,该算法不仅有较强的功能,而且具有较好的规模可伸缩性.
文摘分析分布式数据流聚类算法的基本框架结构,针对CluStream算法对非球形聚类效果不佳提出一种基于密度和中心点的分布式数据流聚类算法DDCS-Clustering(Distributed Density and Centers Stream Clustering)。该算法应用密度、中心点与衰减时间窗口,在分布式环境下对数据流进行聚类。实验结果表明,DDCS-Clustering算法具有较高的聚类质量与较低的通信代价。