A series of 9 soil samples were taken at a timber treatment site in SW France where Cu sulphate and chromated copper arsenate (CCA) have been used as wood preservatives (Sites P1 to P9) and one soil sample was col...A series of 9 soil samples were taken at a timber treatment site in SW France where Cu sulphate and chromated copper arsenate (CCA) have been used as wood preservatives (Sites P1 to P9) and one soil sample was collected at an adjacent site on the same soil type (Site P10). Copper was a major contaminant in all topsoils, varying from 65 (Soil P5) to 2600 mg Cu kg^-1 (Soil P7), exceeding background values for French sandy soils. As and Cr did not accumulate in soil, except at Site P8 (52 mg As kg^-1 and 87 mg Cr kg^-1) where CCA-treated posts were stacked. Soil ecotoxicity was assessed with bioassays using radish, lettuce, slug Arion rufus L., and earthworm Dendrobaena octaedra (Savigny). There were significantly differences in lettuce germination rate, lettuce leaf yield, radish root and leaf yields, slug herbivory, and earthworm avoidance. An additional bioassay showed higher negative impacts on bean shoot and root yields, Rhizobium nodule counts on Bean roots, and guaiacol peroxidase activity in primary Bean leaves for soil from Site PT, with and without fertilisation, than for soil from Site P10, despite both soils having a similar value for computed free ion Cu2+ activity in the soil solution (pCu^2+). Beans grown in soil from Site P7 that had been fertilised showed elevated foliar Cu content and phytotoxic symptoms. Soils from Sites P7 (treatment plant) and P6 (storage of treated utility poles) had the highest ecotoxicity, whereas soil from Site P10 (high organic matter content and cation exchange capacity) had the lowest. Except at Site P10, the soil factor pCu^2+ computed with soil pH and total soil Cu could be used to predict soil ecotoxicity.展开更多
We prepared the Fe3O4/g‐C3N4nanoparticles(NPs)through a simple electrostatic self‐assembly method with a3:97weight ratio to investigate their Fenton,photo‐Fenton and oxidative functionalities besides photocatalytic...We prepared the Fe3O4/g‐C3N4nanoparticles(NPs)through a simple electrostatic self‐assembly method with a3:97weight ratio to investigate their Fenton,photo‐Fenton and oxidative functionalities besides photocatalytic functionality.We observed an improvement of the Fenton and photo‐Fenton activities of the Fe3O4/g‐C3N4nanocomposites.This improvement was attributed to efficient charge transfer between Fe3O4and g‐C3N4at the heterojunctions,inhibition of electron‐hole recombination,a high surface area,and stabilization of Fe3O4against leaching by the hydrophobic g‐C3N4.The obtained NPs showed a higher degradation potential for rhodamine B(RhB)dye than those of Fe3O4and g‐C3N4.As compared to photocatalysis,the efficiency of RhB degradation in the Fenton and photo‐Fenton reactions was increased by20%and90%,respectively.Additionally,the horseradish peroxidase(HRP)activity of the prepared nanomaterials was studied with3,3,5,5‐tetramethylbenzidinedihydrochloride(TMB)as a substrate.Dopamine oxidation was also examined.Results indicate that Fe3O4/g‐C3N4nanocomposites offers more efficient degradation of RhB dye in a photo‐Fenton system compared with regular photocatalytic degradation,which requires a long time.Our study also confirmed that Fe3O4/g‐C3N4nanocomposites can be used as a potential material for mimicking HRP owing to its high affinity for TMB.These findings suggest good potential for applications in biosensing and as a catalyst in oxidation reactions.展开更多
Salvianolic acid B(Sal B) is an active component of traditional Chinese medicine Salvia miltiorrhiza and is used to treat vascular diseases. To better understand its mechanism, the antioxidant capacities of Sal B was ...Salvianolic acid B(Sal B) is an active component of traditional Chinese medicine Salvia miltiorrhiza and is used to treat vascular diseases. To better understand its mechanism, the antioxidant capacities of Sal B was evaluated with human endothelial cells under oxidative stress. Human endothelial cells were pretreated with Sal B for 12 h followed by hydrogen peroxide for another 12 h. Production of reactive oxygen species (ROS), activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX), and concentration of glu-tathione were measured. Protective effect of Sal B on the endothelial cells from hydrogen peroxide-induced damage was observed, and ROS production in the cells was found significantly inhibited. Sal B remarkably enhanced the activities of antioxidant enzymes SOD, CAT and GPX. Furthermore, Sal B up-regulated the intracellular glu-tathione concentration. The results indicate that Sal B protected endothelial cells from oxidative stress by improving the redox status of the cells through enhancing the antioxidant enzyme activities and increasing the reductive glu-tathione concentration after the oxidative challenge.展开更多
Complex research is devoted to basic non-specific stress-reactions caused by abiotic factors such as drought and salinity in vivo and in vitro. A comparative physiological, biochemical and cytogenetic analysis was per...Complex research is devoted to basic non-specific stress-reactions caused by abiotic factors such as drought and salinity in vivo and in vitro. A comparative physiological, biochemical and cytogenetic analysis was performed and showed the peculiarities of growth and viability on various (cellular, tissular, organismic) levels of plants structural arrangement at stress conditions. Determined the parameters of the growth, ion balance, the content of free proline, superoxide dismutase activity and conducted the cytological studies. The commonness of cytological reactions of plant cells to abiotic stress was revealed. The considerable positive correlation relationships between growth of callus biomass and increases of primary roots number under abiotic stressess, between growth of callus biomass and capacity for survival of seedlings under osmotic stress were registered. Such correlation tells about comparability of stress tolerance valuation at different levels of plants structural arrangement. The considerable negative correlation between K~/Na~ ions relations and percent increase of free proline in calluses were showed. Physiological and biochemical indicators of abiotic stresses impact on plants cells and tissues, such as SOD activity and K^+/Na^+ ions correlation were noted. These indicators are effective as metabolic markers in the course of testing and selection of stress-resistant cereals in vivo and in vitro.展开更多
文摘目的 单原子纳米酶(single-atom nanozyme,SAN)因其高原子利用率及丰富的类酶活性被广泛研究。但是目前大多数SAN活性位点负载量较低,限制了其进一步应用和发展。本研究旨在制备一种高原子负载量的SAN,并对其类酶活性进行系统研究,希望为高负载SAN的制备提供思路,并为SAN在更广泛领域的应用提供理论支持。方法 本研究通过原位锚定策略将金属盐前驱体锚定在氨基化石墨烯量子点框架中,在惰性气体保护下进行高温热解稳定Cu原子和载体之间的化学键,制备出负载量高达7.66%(质量百分比)的高负载Cu单原子纳米酶(high-loading Cu SAN)。此外,以3,3’,5,5’-四甲基联苯胺(TMB)和氮蓝四唑(NBT)为显色剂,评估了high-loading Cu SAN的类过氧化物酶(POD)、类氧化物酶(OXD)及类超氧化物歧化酶(SOD)活性,并与传统金属有机框架锚定法制备的低负载Cu单原子纳米酶(low-loading Cu SAN)作比较。以过氧化氢(H_(2)O_(2))为催化底物,对比研究了高/低负载Cu SAN的类过氧化氢酶(CAT)活性。结果 研究表明,本文制备的高负载Cu SAN的类POD和SOD活性分别是低负载Cu SAN的3.4倍和8.88倍,且表现出类酶催化选择性。结论 本研究为高负载SAN的制备和活性研究提供了思路,为SAN在检测传感、疾病治疗以及环境保护等方面的应用奠定了基础。
基金Project supported by the French Agency for Environment and Energy (ADEME)Department of Polluted Soils and Sites, Angers, France (No.ADEME 05 72 C0018/INRA 22000033)
文摘A series of 9 soil samples were taken at a timber treatment site in SW France where Cu sulphate and chromated copper arsenate (CCA) have been used as wood preservatives (Sites P1 to P9) and one soil sample was collected at an adjacent site on the same soil type (Site P10). Copper was a major contaminant in all topsoils, varying from 65 (Soil P5) to 2600 mg Cu kg^-1 (Soil P7), exceeding background values for French sandy soils. As and Cr did not accumulate in soil, except at Site P8 (52 mg As kg^-1 and 87 mg Cr kg^-1) where CCA-treated posts were stacked. Soil ecotoxicity was assessed with bioassays using radish, lettuce, slug Arion rufus L., and earthworm Dendrobaena octaedra (Savigny). There were significantly differences in lettuce germination rate, lettuce leaf yield, radish root and leaf yields, slug herbivory, and earthworm avoidance. An additional bioassay showed higher negative impacts on bean shoot and root yields, Rhizobium nodule counts on Bean roots, and guaiacol peroxidase activity in primary Bean leaves for soil from Site PT, with and without fertilisation, than for soil from Site P10, despite both soils having a similar value for computed free ion Cu2+ activity in the soil solution (pCu^2+). Beans grown in soil from Site P7 that had been fertilised showed elevated foliar Cu content and phytotoxic symptoms. Soils from Sites P7 (treatment plant) and P6 (storage of treated utility poles) had the highest ecotoxicity, whereas soil from Site P10 (high organic matter content and cation exchange capacity) had the lowest. Except at Site P10, the soil factor pCu^2+ computed with soil pH and total soil Cu could be used to predict soil ecotoxicity.
基金supported by the National Natural Science Foundation of China(51572253,21771171)Scientific Research Grant of Hefei Science Center of CAS(2015SRG-HSC048)+1 种基金cooperation between NSFC and Netherlands Organization for Scientific Research(51561135011)CAS-TWAS Scholarship Program~~
文摘We prepared the Fe3O4/g‐C3N4nanoparticles(NPs)through a simple electrostatic self‐assembly method with a3:97weight ratio to investigate their Fenton,photo‐Fenton and oxidative functionalities besides photocatalytic functionality.We observed an improvement of the Fenton and photo‐Fenton activities of the Fe3O4/g‐C3N4nanocomposites.This improvement was attributed to efficient charge transfer between Fe3O4and g‐C3N4at the heterojunctions,inhibition of electron‐hole recombination,a high surface area,and stabilization of Fe3O4against leaching by the hydrophobic g‐C3N4.The obtained NPs showed a higher degradation potential for rhodamine B(RhB)dye than those of Fe3O4and g‐C3N4.As compared to photocatalysis,the efficiency of RhB degradation in the Fenton and photo‐Fenton reactions was increased by20%and90%,respectively.Additionally,the horseradish peroxidase(HRP)activity of the prepared nanomaterials was studied with3,3,5,5‐tetramethylbenzidinedihydrochloride(TMB)as a substrate.Dopamine oxidation was also examined.Results indicate that Fe3O4/g‐C3N4nanocomposites offers more efficient degradation of RhB dye in a photo‐Fenton system compared with regular photocatalytic degradation,which requires a long time.Our study also confirmed that Fe3O4/g‐C3N4nanocomposites can be used as a potential material for mimicking HRP owing to its high affinity for TMB.These findings suggest good potential for applications in biosensing and as a catalyst in oxidation reactions.
基金Supported by National Natural Science Foundation of China (No30873400)Natural Science Foundation of Tianjin (No06YFJMC07300)
文摘Salvianolic acid B(Sal B) is an active component of traditional Chinese medicine Salvia miltiorrhiza and is used to treat vascular diseases. To better understand its mechanism, the antioxidant capacities of Sal B was evaluated with human endothelial cells under oxidative stress. Human endothelial cells were pretreated with Sal B for 12 h followed by hydrogen peroxide for another 12 h. Production of reactive oxygen species (ROS), activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX), and concentration of glu-tathione were measured. Protective effect of Sal B on the endothelial cells from hydrogen peroxide-induced damage was observed, and ROS production in the cells was found significantly inhibited. Sal B remarkably enhanced the activities of antioxidant enzymes SOD, CAT and GPX. Furthermore, Sal B up-regulated the intracellular glu-tathione concentration. The results indicate that Sal B protected endothelial cells from oxidative stress by improving the redox status of the cells through enhancing the antioxidant enzyme activities and increasing the reductive glu-tathione concentration after the oxidative challenge.
文摘Complex research is devoted to basic non-specific stress-reactions caused by abiotic factors such as drought and salinity in vivo and in vitro. A comparative physiological, biochemical and cytogenetic analysis was performed and showed the peculiarities of growth and viability on various (cellular, tissular, organismic) levels of plants structural arrangement at stress conditions. Determined the parameters of the growth, ion balance, the content of free proline, superoxide dismutase activity and conducted the cytological studies. The commonness of cytological reactions of plant cells to abiotic stress was revealed. The considerable positive correlation relationships between growth of callus biomass and increases of primary roots number under abiotic stressess, between growth of callus biomass and capacity for survival of seedlings under osmotic stress were registered. Such correlation tells about comparability of stress tolerance valuation at different levels of plants structural arrangement. The considerable negative correlation between K~/Na~ ions relations and percent increase of free proline in calluses were showed. Physiological and biochemical indicators of abiotic stresses impact on plants cells and tissues, such as SOD activity and K^+/Na^+ ions correlation were noted. These indicators are effective as metabolic markers in the course of testing and selection of stress-resistant cereals in vivo and in vitro.