期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Attention-Like YOLO:嵌入类注意力机制的YOLO算法
1
作者 胡朝海 李自胜 王露明 《计算机与数字工程》 2023年第9期1973-1978,共6页
YOLOv3算法满足了大多数任务的实时性和检测精度要求,但对于精度要求更高(大于80%)的任务,未能实现较好的检测效果。针对上述问题,论文提出了一种类注意力机制(Attention-Like)。该机制输入两个分辨率大小不同的特征图,首先利用Padding... YOLOv3算法满足了大多数任务的实时性和检测精度要求,但对于精度要求更高(大于80%)的任务,未能实现较好的检测效果。针对上述问题,论文提出了一种类注意力机制(Attention-Like)。该机制输入两个分辨率大小不同的特征图,首先利用Padding对小特征图进行上采样,采样后的特征图通过Sigmoid函数运算得到上采样权值,其次将上采样权值作用于大特征图以获得过渡特征图,利用卷积对过渡特征图进行下采样,然后通过Sigmoid函数运算得到下采样权值,最后将下采样权值作用于小特征图,通过该方法增强小特征图的几何信息。将Attention-Like嵌入YOLOv3的骨干网络DarkNet-53,实现了Attention-Like YOLO检测算法。实验表明,该算法的平均精确度均值最高达到了82.8%,有效提升了检测精度。 展开更多
关键词 目标检测 YOLOv3算法 类注意力机制 AL-YOLO DarkNet-53
下载PDF
Sentiment classification model for bullet screen based on self-attention mechanism 被引量:2
2
作者 ZHAO Shuxu LIU Lijiao MA Qinjing 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2021年第4期479-488,共10页
With the development of short video industry,video and bullet screen have become important ways to spread public opinions.Public attitudes can be timely obtained through emotional analysis on bullet screen,which can a... With the development of short video industry,video and bullet screen have become important ways to spread public opinions.Public attitudes can be timely obtained through emotional analysis on bullet screen,which can also reduce difficulties in management of online public opinions.A convolutional neural network model based on multi-head attention is proposed to solve the problem of how to effectively model relations among words and identify key words in emotion classification tasks with short text contents and lack of complete context information.Firstly,encode word positions so that order information of input sequences can be used by the model.Secondly,use a multi-head attention mechanism to obtain semantic expressions in different subspaces,effectively capture internal relevance and enhance dependent relationships among words,as well as highlight emotional weights of key emotional words.Then a dilated convolution is used to increase the receptive field and extract more features.On this basis,the above multi-attention mechanism is combined with a convolutional neural network to model and analyze the seven emotional categories of bullet screens.Testing from perspectives of model and dataset,experimental results can validate effectiveness of our approach.Finally,emotions of bullet screens are visualized to provide data supports for hot event controls and other fields. 展开更多
关键词 bullet screen text sentiment classification self-attention mechanism visual analysis hot events control
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部