在文本分类中,选取一个高效的分类算法是提高文本分类准确度,缩短分类时间的关键。提出基于指数分布族的多项式贝叶斯类特定分类算法(exponential family-multinomial naive Bayes,EF-MNB),基于多项式模型构造了 N 个类的分布,利用类特...在文本分类中,选取一个高效的分类算法是提高文本分类准确度,缩短分类时间的关键。提出基于指数分布族的多项式贝叶斯类特定分类算法(exponential family-multinomial naive Bayes,EF-MNB),基于多项式模型构造了 N 个类的分布,利用类特定特征选择算法得到第 N 个类的特征子集及对应类的特征概率密度函数(probability density function,PDF),通过指数分布族构造了 N 个类的原始PDF估计表达式,给定 N 个类的训练集,得到了第 N 个类的最优PDF估计,并基于贝叶斯定理制定了分类规则。仿真结果表明,与基于文档主题生成模型和支持向量机(latent dirichlet allocation-support vector machine,LDA-SVM)的层次分析分类算法、改进的超球支持向量机(improved hyper-sphere support vector machine,IHS-SVM)文本分类算法和基于主成份分析和k最近邻(principal component analysis-k-nearest-neighbor,PCA-KNN)混合分类算法相比,EF-MNB类特定分类算法使用少量的时间就可获得更高分类准确率。展开更多
文摘在文本分类中,选取一个高效的分类算法是提高文本分类准确度,缩短分类时间的关键。提出基于指数分布族的多项式贝叶斯类特定分类算法(exponential family-multinomial naive Bayes,EF-MNB),基于多项式模型构造了 N 个类的分布,利用类特定特征选择算法得到第 N 个类的特征子集及对应类的特征概率密度函数(probability density function,PDF),通过指数分布族构造了 N 个类的原始PDF估计表达式,给定 N 个类的训练集,得到了第 N 个类的最优PDF估计,并基于贝叶斯定理制定了分类规则。仿真结果表明,与基于文档主题生成模型和支持向量机(latent dirichlet allocation-support vector machine,LDA-SVM)的层次分析分类算法、改进的超球支持向量机(improved hyper-sphere support vector machine,IHS-SVM)文本分类算法和基于主成份分析和k最近邻(principal component analysis-k-nearest-neighbor,PCA-KNN)混合分类算法相比,EF-MNB类特定分类算法使用少量的时间就可获得更高分类准确率。