期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
HSA/g-C_(3)N_(4)作为电致化学发光探针检测β-淀粉样蛋白
1
作者 陈孜璇 李文 杨晓燕 《青岛科技大学学报(自然科学版)》 CAS 2023年第4期34-40,共7页
采用一步煅烧法制备了一种电致化学发光(ECL)性能良好的类石墨相-碳化氮二维纳米材料(g-C_(3)N_(4)),经1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐和N-羟基琥珀酰亚胺活化后,g-C_(3)N_(4)与人血清白蛋白(HSA)复合,得到HSA/g-C_(3)N_(4)... 采用一步煅烧法制备了一种电致化学发光(ECL)性能良好的类石墨相-碳化氮二维纳米材料(g-C_(3)N_(4)),经1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐和N-羟基琥珀酰亚胺活化后,g-C_(3)N_(4)与人血清白蛋白(HSA)复合,得到HSA/g-C_(3)N_(4)复合材料。利用Aβ与HSA的结合作用,将HSA/g-C_(3)N_(4)与不同浓度的β-淀粉样蛋白(Aβ)孵育,形成Aβ/HSA/g-C_(3)N_(4)。同时将巯基修饰的Aβ适体固定在金电极表面,通过适体与靶标的特异性结合,可以将Aβ/HSA/g-C_(3)N_(4)捕获到电极上。在共反应剂K2S2O8存在下,该传感器实现了对Aβ的ECL灵敏检测。研究表明,在10 fmol·L^(-1)到100 nmol·L^(-1)范围内,ECL强度与Aβ浓度具有良好线性关系,检出限低至7.2 fmol·L^(-1)。并且该传感器具有较高的灵敏度和较好的特异性。 展开更多
关键词 电致化学发光 类石墨相-碳化氮 人血清白蛋白 Β-淀粉样蛋白
下载PDF
Solvent-assisted synthesis of porous g-C_3N_4 with efficient visible-light photocatalvtic performance for NO removal 被引量:6
2
作者 张文东 赵再望 +1 位作者 董帆 张育新 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2017年第2期372-378,共7页
Graphitic carbon nitride(g-C3N4) with efficient photocatalytic activity was synthesized through thermal polymerization of thiourea with the addition of water(CN-W) or ethanol(CN-E) at 550 ℃for 2 h.The physicoch... Graphitic carbon nitride(g-C3N4) with efficient photocatalytic activity was synthesized through thermal polymerization of thiourea with the addition of water(CN-W) or ethanol(CN-E) at 550 ℃for 2 h.The physicochemical properties of the g-C3N4 were investigated by X-ray diffraction,transmission electron microscopy,ultraviolet-visible spectroscopy,photoluminescence spectroscopy,diffuse-reflection spectroscopy,BET and BJH surface area characterization,and elemental analysis.The carbon content was found to have self-doped into the g-C3N4 matrix during the thermal polymerization of thiourea and ethanol.CN-W and CN-E showed considerably enhanced visible-light photocatalytic activity,with NO removal percentages of 37.2%and 48.3%,respectively.Compared with pure g-C3N4,both the short and long lifetimes of the charge carriers in CN-W and CN-E were found to be prolonged.The mechanism of improved visible-light photocatalytic activity was deduced.The present work may provide a facile route to optimize the microstructure of g-C3N4photocatalysts for high-performance environmental and energy applications. 展开更多
关键词 Solvent-assisted Graphitic carbon nitride Visible light Photocatalytic performance Nitrogen oxide removal
下载PDF
Accelerated separation of photogenerated charge carriers and enhanced photocatalytic performance of g-C3N4 by Bi2S3 nanoparticles 被引量:10
3
作者 Qiang Hao Ci’an Xie +4 位作者 Yongming Huang Daimei Chen Yiwen Liu Wei Wei Bing-Jie Ni 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第2期249-258,共10页
Employing photothermal conversion to improve the photocatalytic activity of g-C3N4 is rarely reported previously. Herein, different ratios of g-C3N4/Bi2S3 heterojunction materials are synthesized by a facile ultrasoni... Employing photothermal conversion to improve the photocatalytic activity of g-C3N4 is rarely reported previously. Herein, different ratios of g-C3N4/Bi2S3 heterojunction materials are synthesized by a facile ultrasonic method. Advanced characterizations such as X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and high-resolution transmission electron microscopy are employed to analyze the morphology and structure of the prepared materials. Compared with sole counterparts, the heterojunction materials CN-Bi S-2 exhibit significantly enhanced photocatalytic performance, which is 2.05-fold as g-C3N4 and 4.42-fold as Bi2S3. A possible degradation pathway of methylene blue(MB) was proposed. Based on the photoproduced high-energy electrons and photothermal effect of Bi2S3, the transfer and separation of electron-hole pairs are greatly enhanced and more active species are produced. In addition, the relatively high utilization efficiency of solar energy has synergistic effect for the better photocatalytic performance. 展开更多
关键词 Graphitic carbon nitride Bismuth sulfide PHOTOCATALYST Wastewater treatment High-energy electron
下载PDF
Interfacial engineering of graphitic carbon nitride(g-C_3N_4)-based metal sulfide heterojunction photocatalysts for energy conversion: A review 被引量:35
4
作者 Yijie Ren Deqian Zeng Wee-Jun Ong 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第3期289-319,共31页
As one of the most appealing and attractive technologies, photocatalysis is widely used as a promising method to circumvent the environmental and energy problems. Due to its chemical stability and unique physicochemic... As one of the most appealing and attractive technologies, photocatalysis is widely used as a promising method to circumvent the environmental and energy problems. Due to its chemical stability and unique physicochemical, graphitic carbon nitride (g-C3N4) has become research hotspots in the community. However, g-C3N4 photocatalyst still suffers from many problems, resulting in unsatisfactory photocatalytic activity such as low specific surface area, high charge recombination and insufficient visible light utilization. Since 2009, g-C3N4-based heterostructures have attracted the attention of scientists worldwide for their greatly enhanced photocatalytic performance. Overall, this review summarizes the recent advances of g-C3N4-based nanocomposites modified with transition metal sulfide (TMS), including (1) preparation of pristine g-C3N4,(2) modification strategies of g-C3N4,(3) design principles of TMS-modified g-C3N4 heterostructured photocatalysts, and (4) applications in energy conversion. What is more, the characteristics and transfer mechanisms of each classification of the metal sulfide heterojunction system will be critically reviewed, spanning from the following categories:(1) Type I heterojunction,(2) Type II heterojunction,(3) p-n heterojunction,(4) Schottky junction and (5) Z-scheme heterojunction. Apart from that, the application of g-C3N4-based heterostructured photocatalysts in H2 evolution, CO2 reduction, N2 fixation and pollutant degradation will also be systematically presented. Last but not least, this review will conclude with invigorating perspectives, limitations and prospects for further advancing g-C3N4-based heterostructured photocatalysts toward practical benefits for a sustainable future. 展开更多
关键词 Graphitic carbon nitride Metal sulfide PHOTOCATALYSIS Energy transformation Water splitting Reduction of carbon dioxide Pollutant degradation Nitrogen fixation
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部