Ti-doped graphite-like carbon (Ti-GLC) films were synthesized successfully by magnetron sputtering technique. The compositions, microstructures and properties of the Ti-doped GLC films dependent on the parameter of ...Ti-doped graphite-like carbon (Ti-GLC) films were synthesized successfully by magnetron sputtering technique. The compositions, microstructures and properties of the Ti-doped GLC films dependent on the parameter of Ti target current were systemically investigated by Raman spectra, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), nanoindentation and ball-on-disk tribometer. With the increase of the Ti target current, the ratio of sp2 bond and the content of Ti as well as the film hardness and compressive internal stress increase, but the high content of the Ti would result in the loose film due to the formation of the squamose structure. Less incorporated Ti reduces the friction of the GLC film in dry-sliding condition, while pure GLC film exhibits the lowest friction coefficient in water-lubricated condition. Ti-GLC film deposited with low Ti target current shows high wear resistance in both dry-sliding and water-lubricated conditions.展开更多
Seeking catalysts with high electrocatalytic activity for ambient-condition N2 reduction reaction (NRR) remains an ongoing challenge due to the chemical inertness of N2.Herein,defect-rich WS2 nanosheets (WS2-x) were d...Seeking catalysts with high electrocatalytic activity for ambient-condition N2 reduction reaction (NRR) remains an ongoing challenge due to the chemical inertness of N2.Herein,defect-rich WS2 nanosheets (WS2-x) were designed as an efficient electrocatalyst for NRR,which were prepared via vulcanizing the oxygen-vacancy-rich tungsten oxide in a vacuum tube.The sulfur defects were conducive to the adsorption and activation of N2.In neutral electrolyte of 0.1 mol L^(-1)Na2SO_(4) at-0.60 V vs.reversible hydrogen electrode,such WS2-xoffered a high Faradaic efficiency of 12.1%with a NH3generation rate of 16.38μg h-1mg-1cat..展开更多
The complete restoration of a perfect carbon lattice has been a central issue in the research on graphene derived from graphite oxide since this preparation route was first proposed several years ago, but such a goal ...The complete restoration of a perfect carbon lattice has been a central issue in the research on graphene derived from graphite oxide since this preparation route was first proposed several years ago, but such a goal has so far remained elusive. Here, we demonstrate that the highly defective structure of reduced graphene oxide sheets assembled into free-standing, paper-like films can be fully repaired by means of high temperature annealing (graphitization). Characterization of the films by X-ray photoelectron and Raman spectroscopy, X-ray diffraction and scanning tunneling microscopy indicated that the main stages in the transformation of the films were (i) complete removal of oxygen functional groups and generation of atomic vacancies (up to 1,500 ~C), and (ii) vacancy annihilation and coalescence of adjacent overlapping sheets to yield continuous polycrystalline layers (1,800-2,700 ~C) similar to those of highly oriented graphites. The prevailing type of defect in the polycrystalline layers were the grain boundaries separating neighboring domains, which were typically a few hundred nanometers in lateral size, exhibited long-range graphitic order and were virtually free of even atomic-sized defects. The electrical conductivity of the annealed films was as high as 577,000 S-m-1, which is by far the largest value reported to date for any material derived from graphene oxide, and strategies for further improvement without the need to resort to higher annealing temperatures are suggested. Overall, this work opens the prospect of truly achieving a complete restoration of the carbon lattice in graphene oxide materials.展开更多
基金Project (50905178) supported by the National Natural Science Foundation of ChinaProject (2011CB706603) supported by the National Basic Research Program of China
文摘Ti-doped graphite-like carbon (Ti-GLC) films were synthesized successfully by magnetron sputtering technique. The compositions, microstructures and properties of the Ti-doped GLC films dependent on the parameter of Ti target current were systemically investigated by Raman spectra, X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), nanoindentation and ball-on-disk tribometer. With the increase of the Ti target current, the ratio of sp2 bond and the content of Ti as well as the film hardness and compressive internal stress increase, but the high content of the Ti would result in the loose film due to the formation of the squamose structure. Less incorporated Ti reduces the friction of the GLC film in dry-sliding condition, while pure GLC film exhibits the lowest friction coefficient in water-lubricated condition. Ti-GLC film deposited with low Ti target current shows high wear resistance in both dry-sliding and water-lubricated conditions.
基金supported by the National Natural Science Foundation of China (21874079)the Natural Science Foundation for Outstanding Young Scientists of Shandong Province (ZR2018JL011)+3 种基金the Key R&D Project of Shandong Province (GG201809230180)Taishan Scholars Program of Shandong Province (tsqn201909088)the Outstanding Youth Innovation Team of Universities in Shandong Province (2019KJA027)the Science & Technology Fund Planning Project of Shandong Colleges and Universities (J16LA13 and J18KA112)。
文摘Seeking catalysts with high electrocatalytic activity for ambient-condition N2 reduction reaction (NRR) remains an ongoing challenge due to the chemical inertness of N2.Herein,defect-rich WS2 nanosheets (WS2-x) were designed as an efficient electrocatalyst for NRR,which were prepared via vulcanizing the oxygen-vacancy-rich tungsten oxide in a vacuum tube.The sulfur defects were conducive to the adsorption and activation of N2.In neutral electrolyte of 0.1 mol L^(-1)Na2SO_(4) at-0.60 V vs.reversible hydrogen electrode,such WS2-xoffered a high Faradaic efficiency of 12.1%with a NH3generation rate of 16.38μg h-1mg-1cat..
文摘The complete restoration of a perfect carbon lattice has been a central issue in the research on graphene derived from graphite oxide since this preparation route was first proposed several years ago, but such a goal has so far remained elusive. Here, we demonstrate that the highly defective structure of reduced graphene oxide sheets assembled into free-standing, paper-like films can be fully repaired by means of high temperature annealing (graphitization). Characterization of the films by X-ray photoelectron and Raman spectroscopy, X-ray diffraction and scanning tunneling microscopy indicated that the main stages in the transformation of the films were (i) complete removal of oxygen functional groups and generation of atomic vacancies (up to 1,500 ~C), and (ii) vacancy annihilation and coalescence of adjacent overlapping sheets to yield continuous polycrystalline layers (1,800-2,700 ~C) similar to those of highly oriented graphites. The prevailing type of defect in the polycrystalline layers were the grain boundaries separating neighboring domains, which were typically a few hundred nanometers in lateral size, exhibited long-range graphitic order and were virtually free of even atomic-sized defects. The electrical conductivity of the annealed films was as high as 577,000 S-m-1, which is by far the largest value reported to date for any material derived from graphene oxide, and strategies for further improvement without the need to resort to higher annealing temperatures are suggested. Overall, this work opens the prospect of truly achieving a complete restoration of the carbon lattice in graphene oxide materials.