Graph-theoretical approaches have been widely used for data clustering and image segmentation recently. The goal of data clustering is to discover the underlying distribution and structural information of the given da...Graph-theoretical approaches have been widely used for data clustering and image segmentation recently. The goal of data clustering is to discover the underlying distribution and structural information of the given data, while image segmentation is to partition an image into several non-overlapping regions. Therefore, two popular graph-theoretical clustering methods are analyzed, including the directed tree based data clustering and the minimum spanning tree based image segmentation. There are two contributions: (1) To improve the directed tree based data clustering for image segmentation, (2) To improve the minimum spanning tree based image segmentation for data clustering. The extensive experiments using artificial and real-world data indicate that the improved directed tree based image segmentation can partition images well by preserving enough details, and the improved minimum spanning tree based data clustering can well cluster data in manifold structure.展开更多
A new algorithm for segmentation of suspected lung ROI(regions of interest)by mean-shift clustering and multi-scale HESSIAN matrix dot filtering was proposed.Original image was firstly filtered by multi-scale HESSIAN ...A new algorithm for segmentation of suspected lung ROI(regions of interest)by mean-shift clustering and multi-scale HESSIAN matrix dot filtering was proposed.Original image was firstly filtered by multi-scale HESSIAN matrix dot filters,round suspected nodular lesions in the image were enhanced,and linear shape regions of the trachea and vascular were suppressed.Then,three types of information,such as,shape filtering value of HESSIAN matrix,gray value,and spatial location,were introduced to feature space.The kernel function of mean-shift clustering was divided into product form of three kinds of kernel functions corresponding to the three feature information.Finally,bandwidths were calculated adaptively to determine the bandwidth of each suspected area,and they were used in mean-shift clustering segmentation.Experimental results show that by the introduction of HESSIAN matrix of dot filtering information to mean-shift clustering,nodular regions can be segmented from blood vessels,trachea,or cross regions connected to the nodule,non-nodular areas can be removed from ROIs properly,and ground glass object(GGO)nodular areas can also be segmented.For the experimental data set of 127 different forms of nodules,the average accuracy of the proposed algorithm is more than 90%.展开更多
To solve the problem of poor anti-noise performance of the traditional fuzzy C-means (FCM) algorithm in image segmentation, a novel two-dimensional FCM clustering algorithm for image segmentation was proposed. In this...To solve the problem of poor anti-noise performance of the traditional fuzzy C-means (FCM) algorithm in image segmentation, a novel two-dimensional FCM clustering algorithm for image segmentation was proposed. In this method, the image segmentation was converted into an optimization problem. The fitness function containing neighbor information was set up based on the gray information and the neighbor relations between the pixels described by the improved two-dimensional histogram. By making use of the global searching ability of the predator-prey particle swarm optimization, the optimal cluster center could be obtained by iterative optimization, and the image segmentation could be accomplished. The simulation results show that the segmentation accuracy ratio of the proposed method is above 99%. The proposed algorithm has strong anti-noise capability, high clustering accuracy and good segment effect, indicating that it is an effective algorithm for image segmentation.展开更多
To improve the segmentation quality and efficiency of color image,a novel approach which combines the advantages of the mean shift(MS) segmentation and improved ant clustering method is proposed.The regions which can ...To improve the segmentation quality and efficiency of color image,a novel approach which combines the advantages of the mean shift(MS) segmentation and improved ant clustering method is proposed.The regions which can preserve the discontinuity characteristics of an image are segmented by MS algorithm,and then they are represented by a graph in which every region is represented by a node.In order to solve the graph partition problem,an improved ant clustering algorithm,called similarity carrying ant model(SCAM-ant),is proposed,in which a new similarity calculation method is given.Using SCAM-ant,the maximum number of items that each ant can carry will increase,the clustering time will be effectively reduced,and globally optimized clustering can also be realized.Because the graph is not based on the pixels of original image but on the segmentation result of MS algorithm,the computational complexity is greatly reduced.Experiments show that the proposed method can realize color image segmentation efficiently,and compared with the conventional methods based on the image pixels,it improves the image segmentation quality and the anti-interference ability.展开更多
A novel moving objects segmentation method is proposed in this paper. A modified three dimensional recursive search (3DRS) algorithm is used in order to obtain motion information accurately. A motion feature descrip...A novel moving objects segmentation method is proposed in this paper. A modified three dimensional recursive search (3DRS) algorithm is used in order to obtain motion information accurately. A motion feature descriptor (MFD) is designed to describe motion feature of each block in a picture based on motion intensity, motion in occlusion areas, and motion correlation among neighbouring blocks. Then, a fuzzy C-means clustering algorithm (FCM) is implemented based on those MFDs so as to segment moving objects. Moreover, a new parameter named as gathering degree is used to distinguish foreground moving objects and background motion. Experimental results demonstrate the effectiveness of the proposed method.展开更多
One of the most important problems of clustering is to define the number of classes. In fact, it is not easy to find an appropriate method to measure whether the cluster configuration is acceptable or not. In this pap...One of the most important problems of clustering is to define the number of classes. In fact, it is not easy to find an appropriate method to measure whether the cluster configuration is acceptable or not. In this paper we propose a possible and non-automatic solution considering different criteria of clustering and comparing their results. In this way robust structures of an analyzed dataset can be often caught (or established) and an optimal cluster configuration, which presents a meaningful association, may be defined. In particular, we also focus on the variables which may be used in cluster analysis. In fact, variables which contain little clustering information can cause misleading and not-robustness results. Therefore, three algorithms are employed in this study: K-means partitioning methods, Partitioning Around Medoids (PAM) and the Heuristic Identification of Noisy Variables (HINoV). The results are compared with robust methods ones.展开更多
This paper presents a fuzzy C- means clustering image segmentation algorithm based on particle swarm optimization, the method utilizes the strong search ability of particle swarm clustering search center. Because the ...This paper presents a fuzzy C- means clustering image segmentation algorithm based on particle swarm optimization, the method utilizes the strong search ability of particle swarm clustering search center. Because the search clustering center has small amount of calculation according to density, so it can greatly improve the calculation speed of fuzzy C- means algorithm. The experimental results show that, this method can make the fuzzy clustering to obviously improve the speed, so it can achieve fast image segmentation.展开更多
Previously we have designed and implemented new image browsing facilities to support effective offiine image contents on mobile devices with limited capabilities: low bandwidth, small display, and slow processing. In...Previously we have designed and implemented new image browsing facilities to support effective offiine image contents on mobile devices with limited capabilities: low bandwidth, small display, and slow processing. In this letter, we fulfill the automatic production of cartoon contents fitting small-screen display, and introduce a clustering method useful for various types of cartoon images as a prerequisite stage for preserving semantic meaning. The usage of neural networks is to properly cut the various forms of pages. Texture information that is useful for grayscale image segmentation gives us a good clue for page layout analysis using the multilayer perceptron (MLP) based x-y recursive algorithm. We also automatically frame the segment MLP using agglomerative segmentation. Our experimental results show that the combined approaches yield good results of segmentation for several cartoons.展开更多
基金Supported by the Key National Natural Science Foundation of China(61035003)~~
文摘Graph-theoretical approaches have been widely used for data clustering and image segmentation recently. The goal of data clustering is to discover the underlying distribution and structural information of the given data, while image segmentation is to partition an image into several non-overlapping regions. Therefore, two popular graph-theoretical clustering methods are analyzed, including the directed tree based data clustering and the minimum spanning tree based image segmentation. There are two contributions: (1) To improve the directed tree based data clustering for image segmentation, (2) To improve the minimum spanning tree based image segmentation for data clustering. The extensive experiments using artificial and real-world data indicate that the improved directed tree based image segmentation can partition images well by preserving enough details, and the improved minimum spanning tree based data clustering can well cluster data in manifold structure.
基金Projects(61172002,61001047,60671050)supported by the National Natural Science Foundation of ChinaProject(N100404010)supported by Fundamental Research Grant Scheme for the Central Universities,China
文摘A new algorithm for segmentation of suspected lung ROI(regions of interest)by mean-shift clustering and multi-scale HESSIAN matrix dot filtering was proposed.Original image was firstly filtered by multi-scale HESSIAN matrix dot filters,round suspected nodular lesions in the image were enhanced,and linear shape regions of the trachea and vascular were suppressed.Then,three types of information,such as,shape filtering value of HESSIAN matrix,gray value,and spatial location,were introduced to feature space.The kernel function of mean-shift clustering was divided into product form of three kinds of kernel functions corresponding to the three feature information.Finally,bandwidths were calculated adaptively to determine the bandwidth of each suspected area,and they were used in mean-shift clustering segmentation.Experimental results show that by the introduction of HESSIAN matrix of dot filtering information to mean-shift clustering,nodular regions can be segmented from blood vessels,trachea,or cross regions connected to the nodule,non-nodular areas can be removed from ROIs properly,and ground glass object(GGO)nodular areas can also be segmented.For the experimental data set of 127 different forms of nodules,the average accuracy of the proposed algorithm is more than 90%.
基金Project(06JJ50110) supported by the Natural Science Foundation of Hunan Province, China
文摘To solve the problem of poor anti-noise performance of the traditional fuzzy C-means (FCM) algorithm in image segmentation, a novel two-dimensional FCM clustering algorithm for image segmentation was proposed. In this method, the image segmentation was converted into an optimization problem. The fitness function containing neighbor information was set up based on the gray information and the neighbor relations between the pixels described by the improved two-dimensional histogram. By making use of the global searching ability of the predator-prey particle swarm optimization, the optimal cluster center could be obtained by iterative optimization, and the image segmentation could be accomplished. The simulation results show that the segmentation accuracy ratio of the proposed method is above 99%. The proposed algorithm has strong anti-noise capability, high clustering accuracy and good segment effect, indicating that it is an effective algorithm for image segmentation.
基金Project(60874070) supported by the National Natural Science Foundation of China
文摘To improve the segmentation quality and efficiency of color image,a novel approach which combines the advantages of the mean shift(MS) segmentation and improved ant clustering method is proposed.The regions which can preserve the discontinuity characteristics of an image are segmented by MS algorithm,and then they are represented by a graph in which every region is represented by a node.In order to solve the graph partition problem,an improved ant clustering algorithm,called similarity carrying ant model(SCAM-ant),is proposed,in which a new similarity calculation method is given.Using SCAM-ant,the maximum number of items that each ant can carry will increase,the clustering time will be effectively reduced,and globally optimized clustering can also be realized.Because the graph is not based on the pixels of original image but on the segmentation result of MS algorithm,the computational complexity is greatly reduced.Experiments show that the proposed method can realize color image segmentation efficiently,and compared with the conventional methods based on the image pixels,it improves the image segmentation quality and the anti-interference ability.
基金Supported by the National Natural Science Foundation of China (No. 60772134, 60902081, 60902052) the 111 Project (No.B08038) the Fundamental Research Funds for the Central Universities(No.72105457).
文摘A novel moving objects segmentation method is proposed in this paper. A modified three dimensional recursive search (3DRS) algorithm is used in order to obtain motion information accurately. A motion feature descriptor (MFD) is designed to describe motion feature of each block in a picture based on motion intensity, motion in occlusion areas, and motion correlation among neighbouring blocks. Then, a fuzzy C-means clustering algorithm (FCM) is implemented based on those MFDs so as to segment moving objects. Moreover, a new parameter named as gathering degree is used to distinguish foreground moving objects and background motion. Experimental results demonstrate the effectiveness of the proposed method.
文摘One of the most important problems of clustering is to define the number of classes. In fact, it is not easy to find an appropriate method to measure whether the cluster configuration is acceptable or not. In this paper we propose a possible and non-automatic solution considering different criteria of clustering and comparing their results. In this way robust structures of an analyzed dataset can be often caught (or established) and an optimal cluster configuration, which presents a meaningful association, may be defined. In particular, we also focus on the variables which may be used in cluster analysis. In fact, variables which contain little clustering information can cause misleading and not-robustness results. Therefore, three algorithms are employed in this study: K-means partitioning methods, Partitioning Around Medoids (PAM) and the Heuristic Identification of Noisy Variables (HINoV). The results are compared with robust methods ones.
文摘This paper presents a fuzzy C- means clustering image segmentation algorithm based on particle swarm optimization, the method utilizes the strong search ability of particle swarm clustering search center. Because the search clustering center has small amount of calculation according to density, so it can greatly improve the calculation speed of fuzzy C- means algorithm. The experimental results show that, this method can make the fuzzy clustering to obviously improve the speed, so it can achieve fast image segmentation.
基金Project partially supported by the Ministry of Knowledge Economy (MKE) of Korea under the Information Technology Research Center (ITRC) Support Programthe Basic Research Program of the Korea Science (No. R01-2006-000-11214-0)
文摘Previously we have designed and implemented new image browsing facilities to support effective offiine image contents on mobile devices with limited capabilities: low bandwidth, small display, and slow processing. In this letter, we fulfill the automatic production of cartoon contents fitting small-screen display, and introduce a clustering method useful for various types of cartoon images as a prerequisite stage for preserving semantic meaning. The usage of neural networks is to properly cut the various forms of pages. Texture information that is useful for grayscale image segmentation gives us a good clue for page layout analysis using the multilayer perceptron (MLP) based x-y recursive algorithm. We also automatically frame the segment MLP using agglomerative segmentation. Our experimental results show that the combined approaches yield good results of segmentation for several cartoons.