期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
融合能量熵编码和分类模型的牵引电机故障诊断 被引量:3
1
作者 张坤鹏 李昊 +2 位作者 安春兰 杨辉 张志超 《铁道学报》 EI CAS CSCD 北大核心 2023年第9期64-73,共10页
针对牵引电机故障特征不明显、识别定位困难等问题,提出一种融合能量熵编码与分类模型的故障特征量化诊断方法。结合故障机理特性,对故障严重程度进行建模,用微弱电流信号重构对故障敏感的电磁转矩信号,建立基于经验模态分解能量熵和故... 针对牵引电机故障特征不明显、识别定位困难等问题,提出一种融合能量熵编码与分类模型的故障特征量化诊断方法。结合故障机理特性,对故障严重程度进行建模,用微弱电流信号重构对故障敏感的电磁转矩信号,建立基于经验模态分解能量熵和故障属性知识编码的故障特征矩阵;为消除牵引电机故障样本少、非线性模式识别对精确诊断的影响,提出一种改进的灰狼优化算法(IGWO)对支持向量机分类SVM模型参数进行辨识,通过对多类故障准确识别率寻优实现对牵引电机状态预测。在高速列车牵引系统半实物仿真平台进行优化模型对比试验,通过对故障诊断指标分析可知,能量熵编码与IGWO-SVM融合方案可以很好地识别牵引电机故障。 展开更多
关键词 高速列车牵引电机 电磁转矩能量熵编码 改进的灰狼优化算法 优化模型 故障准确识别率
下载PDF
用于内燃机振动诊断的一种特征参数选取方法 被引量:2
2
作者 姚良 李艾华 张振仁 《内燃机工程》 EI CAS CSCD 北大核心 2009年第4期74-77,共4页
针对内燃机振动诊断提出了一种新的特征参数选取方法,计算每个特征参数对各类工况的类识别率,选取对各类工况类识别率最高的前2个特征参数形成联合诊断向量。针对内燃机气门机构间隙异常故障的诊断问题,对缸盖振动信号的常用幅值域特征... 针对内燃机振动诊断提出了一种新的特征参数选取方法,计算每个特征参数对各类工况的类识别率,选取对各类工况类识别率最高的前2个特征参数形成联合诊断向量。针对内燃机气门机构间隙异常故障的诊断问题,对缸盖振动信号的常用幅值域特征参数进行了选取,并采用人工神经网络模型进行了验证。结果表明:使用基于类识别率的特征参数选取方法将特征维数缩减一半时,诊断准确率的下降小于1%。 展开更多
关键词 内燃机 振动信号 特征参数 故障诊断 类识别率
下载PDF
Beyond bag of latent topics: spatial pyramid matching for scene category recognition 被引量:2
3
作者 Fu-xiang LU Jun HUANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2015年第10期817-828,共12页
We propose a heterogeneous, mid-level feature based method for recognizing natural scene categories. The proposed feature introduces spatial information among the latent topics by means of spatial pyramid, while the l... We propose a heterogeneous, mid-level feature based method for recognizing natural scene categories. The proposed feature introduces spatial information among the latent topics by means of spatial pyramid, while the latent topics are obtained by using probabilistic latent semantic analysis (pLSA) based on the bag-of-words representation. The proposed feature always performs better than standard pLSA because the performance of pLSA is adversely affected in many cases due to the loss of spatial information. By combining various interest point detectors and local region descriptors used in the bag-of-words model, the proposed feature can make further improvement for diverse scene category recognition tasks. We also propose a two-stage framework for multi-class classification. In the first stage, for each of possible detector/descriptor pairs, adaptive boosting classifiers are employed to select the most discriminative topics and further compute posterior probabilities of an unknown image from those selected topics. The second stage uses the prod-max rule to combine information coming from multiple sources and assigns the unknown image to the scene category with the highest 'final' posterior probability. Experimental results on three benchmark scene datasets show that the proposed method exceeds most state-of-the-art methods. 展开更多
关键词 Scene category recognition Probabilistic latent semantic analysis BAG-OF-WORDS Adaptive boosting
原文传递
Grade classification of neuroepithelial tumors using high-resolution magic-angle spinning proton nuclear magnetic resonance spectroscopy and pattern recognition 被引量:5
4
作者 CHEN WenXue LOU HaiYan +9 位作者 ZHANG HongPing NIE Xiu LAN WenXian YANG YongXia XIANG Yun QI JianPin LEI Hao TANG HuiRu CHEN FenEr DENG Feng 《Science China(Life Sciences)》 SCIE CAS 2011年第7期606-616,共11页
Clinical data have shown that survival rates vary considerably among brain tumor patients,according to the type and grade of the tumor.Metabolite profiles of intact tumor tissues measured with high-resolution magic-an... Clinical data have shown that survival rates vary considerably among brain tumor patients,according to the type and grade of the tumor.Metabolite profiles of intact tumor tissues measured with high-resolution magic-angle spinning proton nuclear magnetic resonance spectroscopy (HRMAS 1H NMRS) can provide important information on tumor biology and metabolism.These metabolic fingerprints can then be used for tumor classification and grading,with great potential value for tumor diagnosis.We studied the metabolic characteristics of 30 neuroepithelial tumor biopsies,including two astrocytomas (grade I),12 astrocytomas (grade II),eight anaplastic astrocytomas (grade III),three glioblastomas (grade IV) and five medulloblastomas (grade IV) from 30 patients using HRMAS 1H NMRS.The results were correlated with pathological features using multivariate data analysis,including principal component analysis (PCA).There were significant differences in the levels of N-acetyl-aspartate (NAA),creatine,myo-inositol,glycine and lactate between tumors of different grades (P<0.05).There were also significant differences in the ratios of NAA/creatine,lactate/creatine,myo-inositol/creatine,glycine/creatine,scyllo-inositol/creatine and alanine/creatine (P<0.05).A soft independent modeling of class analogy model produced a predictive accuracy of 87% for high-grade (grade III-IV) brain tumors with a sensitivity of 87% and a specificity of 93%.HRMAS 1H NMR spectroscopy in conjunction with pattern recognition thus provides a potentially useful tool for the rapid and accurate classification of human brain tumor grades. 展开更多
关键词 neuroepithelial tumor grade classification high-resolution magic-angle spinning nuclear magnetic resonance (HRMASNMR) spectroscopy METABONOMICS pattern recognition
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部