We propose a heterogeneous, mid-level feature based method for recognizing natural scene categories. The proposed feature introduces spatial information among the latent topics by means of spatial pyramid, while the l...We propose a heterogeneous, mid-level feature based method for recognizing natural scene categories. The proposed feature introduces spatial information among the latent topics by means of spatial pyramid, while the latent topics are obtained by using probabilistic latent semantic analysis (pLSA) based on the bag-of-words representation. The proposed feature always performs better than standard pLSA because the performance of pLSA is adversely affected in many cases due to the loss of spatial information. By combining various interest point detectors and local region descriptors used in the bag-of-words model, the proposed feature can make further improvement for diverse scene category recognition tasks. We also propose a two-stage framework for multi-class classification. In the first stage, for each of possible detector/descriptor pairs, adaptive boosting classifiers are employed to select the most discriminative topics and further compute posterior probabilities of an unknown image from those selected topics. The second stage uses the prod-max rule to combine information coming from multiple sources and assigns the unknown image to the scene category with the highest 'final' posterior probability. Experimental results on three benchmark scene datasets show that the proposed method exceeds most state-of-the-art methods.展开更多
Clinical data have shown that survival rates vary considerably among brain tumor patients,according to the type and grade of the tumor.Metabolite profiles of intact tumor tissues measured with high-resolution magic-an...Clinical data have shown that survival rates vary considerably among brain tumor patients,according to the type and grade of the tumor.Metabolite profiles of intact tumor tissues measured with high-resolution magic-angle spinning proton nuclear magnetic resonance spectroscopy (HRMAS 1H NMRS) can provide important information on tumor biology and metabolism.These metabolic fingerprints can then be used for tumor classification and grading,with great potential value for tumor diagnosis.We studied the metabolic characteristics of 30 neuroepithelial tumor biopsies,including two astrocytomas (grade I),12 astrocytomas (grade II),eight anaplastic astrocytomas (grade III),three glioblastomas (grade IV) and five medulloblastomas (grade IV) from 30 patients using HRMAS 1H NMRS.The results were correlated with pathological features using multivariate data analysis,including principal component analysis (PCA).There were significant differences in the levels of N-acetyl-aspartate (NAA),creatine,myo-inositol,glycine and lactate between tumors of different grades (P<0.05).There were also significant differences in the ratios of NAA/creatine,lactate/creatine,myo-inositol/creatine,glycine/creatine,scyllo-inositol/creatine and alanine/creatine (P<0.05).A soft independent modeling of class analogy model produced a predictive accuracy of 87% for high-grade (grade III-IV) brain tumors with a sensitivity of 87% and a specificity of 93%.HRMAS 1H NMR spectroscopy in conjunction with pattern recognition thus provides a potentially useful tool for the rapid and accurate classification of human brain tumor grades.展开更多
基金Project supported by the Fundamental Research Funds for the Central Universities,China(No.lzujbky-2013-41)the National Natural Science Foundation of China(No.61201446)the Basic Scientific Research Business Expenses of the Central University and Open Project of Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education,Lanzhou University(No.LZUMMM2015010)
文摘We propose a heterogeneous, mid-level feature based method for recognizing natural scene categories. The proposed feature introduces spatial information among the latent topics by means of spatial pyramid, while the latent topics are obtained by using probabilistic latent semantic analysis (pLSA) based on the bag-of-words representation. The proposed feature always performs better than standard pLSA because the performance of pLSA is adversely affected in many cases due to the loss of spatial information. By combining various interest point detectors and local region descriptors used in the bag-of-words model, the proposed feature can make further improvement for diverse scene category recognition tasks. We also propose a two-stage framework for multi-class classification. In the first stage, for each of possible detector/descriptor pairs, adaptive boosting classifiers are employed to select the most discriminative topics and further compute posterior probabilities of an unknown image from those selected topics. The second stage uses the prod-max rule to combine information coming from multiple sources and assigns the unknown image to the scene category with the highest 'final' posterior probability. Experimental results on three benchmark scene datasets show that the proposed method exceeds most state-of-the-art methods.
基金supported by the National Natural Science Foundation of China (Grant Nos. 20573132 and 20575074)China Postdoctoral Science Foundation (Grant No. 20090450065)State Key Laboratory of Mag-netic Resonance and Atomic and Molecular Physics (Grant No. T152805)
文摘Clinical data have shown that survival rates vary considerably among brain tumor patients,according to the type and grade of the tumor.Metabolite profiles of intact tumor tissues measured with high-resolution magic-angle spinning proton nuclear magnetic resonance spectroscopy (HRMAS 1H NMRS) can provide important information on tumor biology and metabolism.These metabolic fingerprints can then be used for tumor classification and grading,with great potential value for tumor diagnosis.We studied the metabolic characteristics of 30 neuroepithelial tumor biopsies,including two astrocytomas (grade I),12 astrocytomas (grade II),eight anaplastic astrocytomas (grade III),three glioblastomas (grade IV) and five medulloblastomas (grade IV) from 30 patients using HRMAS 1H NMRS.The results were correlated with pathological features using multivariate data analysis,including principal component analysis (PCA).There were significant differences in the levels of N-acetyl-aspartate (NAA),creatine,myo-inositol,glycine and lactate between tumors of different grades (P<0.05).There were also significant differences in the ratios of NAA/creatine,lactate/creatine,myo-inositol/creatine,glycine/creatine,scyllo-inositol/creatine and alanine/creatine (P<0.05).A soft independent modeling of class analogy model produced a predictive accuracy of 87% for high-grade (grade III-IV) brain tumors with a sensitivity of 87% and a specificity of 93%.HRMAS 1H NMR spectroscopy in conjunction with pattern recognition thus provides a potentially useful tool for the rapid and accurate classification of human brain tumor grades.