ZnO/diamond-like carbon(DLC)thin films are deposited by pulsed laser deposition(PLD),and the room-temperature photoluminescence(PL)is investigated.Using a fluorescence spectrophotometer,we obtain the PL spectra of DLC...ZnO/diamond-like carbon(DLC)thin films are deposited by pulsed laser deposition(PLD),and the room-temperature photoluminescence(PL)is investigated.Using a fluorescence spectrophotometer,we obtain the PL spectra of DLC/Si and ZnO/Si thin films deposited at different substrate temperatures.The ZnO/DLC thin films show a broadband emission almost containing the entire visible spectrum.The Gaussian fitting curves of PL spectra reveal that the visible emission of ZnO/DLC thin films consists of three peaks centered at 381 nm,526 nm and 682 nm,which are attributed to the radiative recombination of ZnO and DLC,respectively.The Commission International de l,Eclairage(CIE)1931(x,y)chromaticity space of ZnO/DLC thin films indicates that the visible PL spectrum is very close to the standard white-light region.展开更多
Reflective and transmissive film interference colors were calculated for DLC films on the Si and SiO 2 substrates.The calculated interference colors were compared with photographed colors of the prepared DLC samples.T...Reflective and transmissive film interference colors were calculated for DLC films on the Si and SiO 2 substrates.The calculated interference colors were compared with photographed colors of the prepared DLC samples.The observed film colors were found to match reasonably well with the corresponding calculated colors,indicating that DLC film colors come from interference instead of color center effects.Color charts for DLC films on the Si and SiO 2 substrates with various optical gaps were constructed,and the relationship between interference color and film properties such as optical gap,thickness and substrate were investigated.Usefulness of the calculated color charts in estimating optical gap or thickness of DLC films were demonstrated.展开更多
基金supported by the National Natural Science Foundation of China(No.11144010)the Innovation Project of Ludong University(No.LY20062802)
文摘ZnO/diamond-like carbon(DLC)thin films are deposited by pulsed laser deposition(PLD),and the room-temperature photoluminescence(PL)is investigated.Using a fluorescence spectrophotometer,we obtain the PL spectra of DLC/Si and ZnO/Si thin films deposited at different substrate temperatures.The ZnO/DLC thin films show a broadband emission almost containing the entire visible spectrum.The Gaussian fitting curves of PL spectra reveal that the visible emission of ZnO/DLC thin films consists of three peaks centered at 381 nm,526 nm and 682 nm,which are attributed to the radiative recombination of ZnO and DLC,respectively.The Commission International de l,Eclairage(CIE)1931(x,y)chromaticity space of ZnO/DLC thin films indicates that the visible PL spectrum is very close to the standard white-light region.
基金supported in part by the National Basic Research Programof China (Grant No. 2012CB933502)
文摘Reflective and transmissive film interference colors were calculated for DLC films on the Si and SiO 2 substrates.The calculated interference colors were compared with photographed colors of the prepared DLC samples.The observed film colors were found to match reasonably well with the corresponding calculated colors,indicating that DLC film colors come from interference instead of color center effects.Color charts for DLC films on the Si and SiO 2 substrates with various optical gaps were constructed,and the relationship between interference color and film properties such as optical gap,thickness and substrate were investigated.Usefulness of the calculated color charts in estimating optical gap or thickness of DLC films were demonstrated.