【目的】大地电磁测深是一种通过观测天然电磁场获取地下电性结构的勘探方法,较易受到噪声干扰。脉冲类噪声是大地电磁工作中的常见噪声,其幅值高、频带宽,会对数据质量产生较大影响。【方法】为了压制脉冲类噪声,以插补思想为基础,提...【目的】大地电磁测深是一种通过观测天然电磁场获取地下电性结构的勘探方法,较易受到噪声干扰。脉冲类噪声是大地电磁工作中的常见噪声,其幅值高、频带宽,会对数据质量产生较大影响。【方法】为了压制脉冲类噪声,以插补思想为基础,提出了基于时间序列双向循环插补模型(Bidirectional recurrent imputation for time series,BRITS)的大地电磁脉冲类噪声处理方法。首先,将噪声干扰段删除,此时大地电磁时间序列可视为待插补的缺失序列,而后利用该缺失序列构建训练集,对BRITS模型进行插补训练,训练完成后对缺失序列进行插补,即可得到去噪结果。通过仿真及实测含噪声数据处理,并与经验模态分解(Empirical mode decomposition,EMD)阈值方法进行了对比。【结果和结论】结果表明:BRITS方法对仿真噪声数据处理后与原始数据的归一化互相关系数可达0.999以上,信噪比可达29 dB以上,EMD阈值方法处理前后相关系数为0.778,信噪比为3.09 dB;在实测数据处理中,BRITS方法有效恢复了噪声干扰数据,相比EMD阈值方法,其阻抗奈奎斯特图更接近天然大地电磁信号特征。通过不同训练样本试验得出:对4分量大地电磁数据而言,数据中至少需包含两道正常分量,单个含噪分量中噪声占比不大于20%,且噪声连续干扰长度不超过10个采样点,此时,BRITS方法去噪后数据的相关系数在0.96以上,可以保证一定的去噪精度。展开更多
传统稀疏表示方法因其在冲击类信号特征提取中的独特优势而在故障诊断领域被广泛研究。然而,传统稀疏表示理论基于对干扰噪声的高斯分布假设,导致其难以适用于多种噪声分布混合的实际现场。针对上述问题,提出一种混合高斯噪声条件下的...传统稀疏表示方法因其在冲击类信号特征提取中的独特优势而在故障诊断领域被广泛研究。然而,传统稀疏表示理论基于对干扰噪声的高斯分布假设,导致其难以适用于多种噪声分布混合的实际现场。针对上述问题,提出一种混合高斯噪声条件下的冲击类故障特征稀疏表示方法。基于传统稀疏表示理论的贝叶斯框架,借助混合高斯分布的万有逼近性质,建立了基于db4小波字典的混合高斯噪声稀疏分解模型,并推导了基于EM(Expectation-maximum,EM)和ADMM(Alternating direction method of multipliers,ADMM)的优化求解算法用于模型求解。仿真和实验结果表明,所提出的方法能够有效提取混合噪声干扰下的冲击类微弱故障特征信号。展开更多
文摘【目的】大地电磁测深是一种通过观测天然电磁场获取地下电性结构的勘探方法,较易受到噪声干扰。脉冲类噪声是大地电磁工作中的常见噪声,其幅值高、频带宽,会对数据质量产生较大影响。【方法】为了压制脉冲类噪声,以插补思想为基础,提出了基于时间序列双向循环插补模型(Bidirectional recurrent imputation for time series,BRITS)的大地电磁脉冲类噪声处理方法。首先,将噪声干扰段删除,此时大地电磁时间序列可视为待插补的缺失序列,而后利用该缺失序列构建训练集,对BRITS模型进行插补训练,训练完成后对缺失序列进行插补,即可得到去噪结果。通过仿真及实测含噪声数据处理,并与经验模态分解(Empirical mode decomposition,EMD)阈值方法进行了对比。【结果和结论】结果表明:BRITS方法对仿真噪声数据处理后与原始数据的归一化互相关系数可达0.999以上,信噪比可达29 dB以上,EMD阈值方法处理前后相关系数为0.778,信噪比为3.09 dB;在实测数据处理中,BRITS方法有效恢复了噪声干扰数据,相比EMD阈值方法,其阻抗奈奎斯特图更接近天然大地电磁信号特征。通过不同训练样本试验得出:对4分量大地电磁数据而言,数据中至少需包含两道正常分量,单个含噪分量中噪声占比不大于20%,且噪声连续干扰长度不超过10个采样点,此时,BRITS方法去噪后数据的相关系数在0.96以上,可以保证一定的去噪精度。
文摘传统稀疏表示方法因其在冲击类信号特征提取中的独特优势而在故障诊断领域被广泛研究。然而,传统稀疏表示理论基于对干扰噪声的高斯分布假设,导致其难以适用于多种噪声分布混合的实际现场。针对上述问题,提出一种混合高斯噪声条件下的冲击类故障特征稀疏表示方法。基于传统稀疏表示理论的贝叶斯框架,借助混合高斯分布的万有逼近性质,建立了基于db4小波字典的混合高斯噪声稀疏分解模型,并推导了基于EM(Expectation-maximum,EM)和ADMM(Alternating direction method of multipliers,ADMM)的优化求解算法用于模型求解。仿真和实验结果表明,所提出的方法能够有效提取混合噪声干扰下的冲击类微弱故障特征信号。