Particle pollution in air, also sometimes known as fine dust contamination, may cause electric contact failure. Recent research further proved that the fine particle is becoming a major disruption of the electronic co...Particle pollution in air, also sometimes known as fine dust contamination, may cause electric contact failure. Recent research further proved that the fine particle is becoming a major disruption of the electronic connectors in signal transmission system. This paper specifies the connector contact in mobile phone application. To study the contact failure of mobile phone, a series of inspections and analytical research methods are introduced. Special features that cause the contact failure are summarized. Particle accumulation is the main problem; organic material such as lactates from sweat of the human body may act as adhesives to stick the separate particles together and make them adhere on the contact surface; chemical properties of dust cause serious local corrosion. The corrosion products may trap the particles and firmly attach on the contact surface; micro motion frequently occurs at the contact interface. Hard particle can be embedded into the surface, and soft particle could be squeezed and inserted into the contact; silicon compounds in dust play the most important role in forming high resistance regions that lead to failure; deposition of particles depends on the amount of materials, static electricity attracting force and gravity force applied on the particles. Current dust test can hardly reflect the serious contact failure. It is difficult to simulate the complexity of contact failure caused by particle contamination. Thus alternative ways of simulation experiment and improvement of contact reliability are proposed.展开更多
Presence of fine dust in air causes serious health hazard for mine operators resulting in such serious problems as coal workers’pneumoconiosis and silicosis.Major sources of dust appear of course along the mining fac...Presence of fine dust in air causes serious health hazard for mine operators resulting in such serious problems as coal workers’pneumoconiosis and silicosis.Major sources of dust appear of course along the mining face where the minerals are extracted.Proper control and management are required to ensure safe working environment in the mine.Here,we utilize the computational fluid dynamic(CFD)approach to evaluate various methods used for mitigating dust dispersion from the mining face and for ensuring safe level of dust concentration in the mine tunnel for safety of the operators.The methods used include:application of blowing and exhaust fans,application of brattice and combination of both.The results suggest that among the examined methods,implementation of appropriately located brattice to direct the flow from the main shaft to the mining face is the most effective method to direct dust particles away from the mining face.展开更多
In this study, the dependence of dust budgets on dust emission schemes is investigated through the simulation of dust storm events, which occurred during 14–25 March 2002, over East Asia, by the Weather Research and ...In this study, the dependence of dust budgets on dust emission schemes is investigated through the simulation of dust storm events, which occurred during 14–25 March 2002, over East Asia, by the Weather Research and Forecasting with Chemistry(WRF/Chem) model coupled with six dust emission schemes. Generally, this model can reasonably reproduce the spatial distribution of surface dust concentration; however, the simulated total dust budget differs significantly with different emission schemes. Moreover, uncertainties in the simulated dust budget vary among regions. It is suggested that the dust emission scheme affects the regional dust budget directly through its impact on the total emitted dust amount; however, the inflow and outflow of dust aerosols simulated by different schemes within a region also depend on the geographical location of the dust emission region. Furthermore, the size distribution of dust particles for a specific dust emission scheme has proven to be important for dust budget calculation due to the dependence of dust deposition amount on dust size distribution.展开更多
A proper control and management of dust dispersion is essential to ensure safe and productive underground working environment. Brattice installation to direct the flow from main shaft to the mining face was found to b...A proper control and management of dust dispersion is essential to ensure safe and productive underground working environment. Brattice installation to direct the flow from main shaft to the mining face was found to be the most effective method to disperse dust particle away from the mining face. However,it limits the movement and disturbs the flexibility of the mining fleets and operators at the tunnel. This study proposes a hybrid brattice system- a combination of a physical brattice together with suitable and flexible directed and located air curtains- to mitigate dust dispersion from the mining face and reduce dust concentration to a safe level for the working operators. A validated three-dimensional computational fluid dynamic model utilizing Eulerian–Lagrangian approach is employed to track the dispersion of dust particle. Several possible hybrid brattice scenarios are evaluated with the objective to improve dust management in underground mine. The results suggest that implementation of hybrid brattice is beneficial for the mining operation: up to three times lower dust concentration is achieved as compared to that of the physical brattice without air curtain.展开更多
The total dust column and the dry deposition flux were calculated based on the optical properties that were measured by a shipboard sun photometer POM-01 MK II in a cloud-free and nonfrontal dust condition on 24 April...The total dust column and the dry deposition flux were calculated based on the optical properties that were measured by a shipboard sun photometer POM-01 MK II in a cloud-free and nonfrontal dust condition on 24 April 2006. The total dust column was calculated by using an integration method of the particle size distribution; the mean value was 1.42±0.30 g m 2. A linear correlation between the total dust column and the aerosol optical depth (AOD) with a linear factor of 2.7 g m 2 over the Sahara was applied to calculate the total dust column in this study; the results were lower than these calculated by the integration method. A reasonable factor of 3.2 g m^-2 was achieved by minimizing the standard deviation (SD) of the two methods. The two layers model, which includes the deposition processes of turbulent transfer, Brownian diffusion, impaction and gravitational settling over the sea's surface, was used to calculate the dry deposition flux; the mean value was 5.05±2.49 μg m^-2 s^-1. A correlation among the total dust column, dry deposition flux, AOD, and effective radius was discussed. The correlation between the total better than that between dust column and the AOD was the total dust column and the effective radius; however, the correlation between the dry deposition flux and the effective radius was better than that between the dry deposition flux and the AOD.展开更多
Airborne pa rt icle counters are used widely to test the air cleanliness of cleanrooms. The cur rent Chinese national standard of airborne particle counter calibration, GB6167 -85, Methods for Testing the Performance ...Airborne pa rt icle counters are used widely to test the air cleanliness of cleanrooms. The cur rent Chinese national standard of airborne particle counter calibration, GB6167 -85, Methods for Testing the Performance of Dust Particle Counter, has kept the same for more than 10 years. It is necessary to be amended in time. This paper discusses the differences between Chinese airborne particle counter calibration procedure and other new calibration procedures in other countries, and points ou t the defects of current Chinese national standard.The draft of revised Chinese National Standard is also introduced. The new revised standard, Methods for Test ing the Performance of Airborne Particle Counter, covers two level calibrations: primary and secondary. Primary calibration procedure includes testing 6 kinds of performances:sample airflow rate, false counting, particle size accuracy and re solution, particle counting stability, counting efficiency and particle concentr ation limit. Secondary calibration is a relative comparing test method to verify the counting accuracy of calibrated airborne particle counters.Finally, how to keep the calibration traceability is suggested.展开更多
In order to improve the utilization rate of foam,an arc jet nozzle was designed for precise dust control.Through theoretical analysis,the different demands of foam were compared amongst arc jets,flat jets and full con...In order to improve the utilization rate of foam,an arc jet nozzle was designed for precise dust control.Through theoretical analysis,the different demands of foam were compared amongst arc jets,flat jets and full cone jets when the dust source was covered identically by foam.It is proved that foam consumption was least when an arc jet was used.Foam production capability of an arc jet nozzle under different conditions was investigated through experiments.The results show that with the gas liquid ratio(GLR)increasing,the spray state of an arc jet nozzle presents successively water jet,foam jet and mist.Under a reasonable working condition range of foam production and a fixed GLR,foam production quantity increases at first,and then decreases with the increase of liquid supply quantity.When the inner diameter of the nozzle is 14 mm,the best GLR is 30 and the optimum liquid supply quantity is0.375 m^3/h.The results of field experiments show that the total dust and respirable dust suppression efficiency of arc jet nozzles is 85.8%and 82.6%respectively,which are 1.39 and 1.37 times higher than the full cone nozzles and 1.20 and 1.19 times higher than the fiat nozzles.展开更多
基金Project (No. 50277002) supported by the National Natural ScienceFoundation of China
文摘Particle pollution in air, also sometimes known as fine dust contamination, may cause electric contact failure. Recent research further proved that the fine particle is becoming a major disruption of the electronic connectors in signal transmission system. This paper specifies the connector contact in mobile phone application. To study the contact failure of mobile phone, a series of inspections and analytical research methods are introduced. Special features that cause the contact failure are summarized. Particle accumulation is the main problem; organic material such as lactates from sweat of the human body may act as adhesives to stick the separate particles together and make them adhere on the contact surface; chemical properties of dust cause serious local corrosion. The corrosion products may trap the particles and firmly attach on the contact surface; micro motion frequently occurs at the contact interface. Hard particle can be embedded into the surface, and soft particle could be squeezed and inserted into the contact; silicon compounds in dust play the most important role in forming high resistance regions that lead to failure; deposition of particles depends on the amount of materials, static electricity attracting force and gravity force applied on the particles. Current dust test can hardly reflect the serious contact failure. It is difficult to simulate the complexity of contact failure caused by particle contamination. Thus alternative ways of simulation experiment and improvement of contact reliability are proposed.
基金financially supported by the Singapore Economic Development Board (EDB) through Minerals Metals and Materials Technology Centre (M3TC) (No.R261501013414)
文摘Presence of fine dust in air causes serious health hazard for mine operators resulting in such serious problems as coal workers’pneumoconiosis and silicosis.Major sources of dust appear of course along the mining face where the minerals are extracted.Proper control and management are required to ensure safe working environment in the mine.Here,we utilize the computational fluid dynamic(CFD)approach to evaluate various methods used for mitigating dust dispersion from the mining face and for ensuring safe level of dust concentration in the mine tunnel for safety of the operators.The methods used include:application of blowing and exhaust fans,application of brattice and combination of both.The results suggest that among the examined methods,implementation of appropriately located brattice to direct the flow from the main shaft to the mining face is the most effective method to direct dust particles away from the mining face.
基金jointly supported by the Strategic Priority Research Program of Chinese Academy of Sciences(XDA05110200)the International Science and Technology Cooperation Program of China(2011DFG23450)
文摘In this study, the dependence of dust budgets on dust emission schemes is investigated through the simulation of dust storm events, which occurred during 14–25 March 2002, over East Asia, by the Weather Research and Forecasting with Chemistry(WRF/Chem) model coupled with six dust emission schemes. Generally, this model can reasonably reproduce the spatial distribution of surface dust concentration; however, the simulated total dust budget differs significantly with different emission schemes. Moreover, uncertainties in the simulated dust budget vary among regions. It is suggested that the dust emission scheme affects the regional dust budget directly through its impact on the total emitted dust amount; however, the inflow and outflow of dust aerosols simulated by different schemes within a region also depend on the geographical location of the dust emission region. Furthermore, the size distribution of dust particles for a specific dust emission scheme has proven to be important for dust budget calculation due to the dependence of dust deposition amount on dust size distribution.
基金financially supported by the Singapore Economic Development Board(EDB)through the Minerals Metals and Materials Technology Centre(M3TC)Research Grant R-261-501-013-414
文摘A proper control and management of dust dispersion is essential to ensure safe and productive underground working environment. Brattice installation to direct the flow from main shaft to the mining face was found to be the most effective method to disperse dust particle away from the mining face. However,it limits the movement and disturbs the flexibility of the mining fleets and operators at the tunnel. This study proposes a hybrid brattice system- a combination of a physical brattice together with suitable and flexible directed and located air curtains- to mitigate dust dispersion from the mining face and reduce dust concentration to a safe level for the working operators. A validated three-dimensional computational fluid dynamic model utilizing Eulerian–Lagrangian approach is employed to track the dispersion of dust particle. Several possible hybrid brattice scenarios are evaluated with the objective to improve dust management in underground mine. The results suggest that implementation of hybrid brattice is beneficial for the mining operation: up to three times lower dust concentration is achieved as compared to that of the physical brattice without air curtain.
基金funded by the National BasicResearch Program of China (Grant No. 2006CB403702)the Public Meteorology Special Foundation of Ministry of Science and Technology (Grant No. GYHY200706036)the National Natural Science Foundation of China (Grant No. 60638020)
文摘The total dust column and the dry deposition flux were calculated based on the optical properties that were measured by a shipboard sun photometer POM-01 MK II in a cloud-free and nonfrontal dust condition on 24 April 2006. The total dust column was calculated by using an integration method of the particle size distribution; the mean value was 1.42±0.30 g m 2. A linear correlation between the total dust column and the aerosol optical depth (AOD) with a linear factor of 2.7 g m 2 over the Sahara was applied to calculate the total dust column in this study; the results were lower than these calculated by the integration method. A reasonable factor of 3.2 g m^-2 was achieved by minimizing the standard deviation (SD) of the two methods. The two layers model, which includes the deposition processes of turbulent transfer, Brownian diffusion, impaction and gravitational settling over the sea's surface, was used to calculate the dry deposition flux; the mean value was 5.05±2.49 μg m^-2 s^-1. A correlation among the total dust column, dry deposition flux, AOD, and effective radius was discussed. The correlation between the total better than that between dust column and the AOD was the total dust column and the effective radius; however, the correlation between the dry deposition flux and the effective radius was better than that between the dry deposition flux and the AOD.
文摘Airborne pa rt icle counters are used widely to test the air cleanliness of cleanrooms. The cur rent Chinese national standard of airborne particle counter calibration, GB6167 -85, Methods for Testing the Performance of Dust Particle Counter, has kept the same for more than 10 years. It is necessary to be amended in time. This paper discusses the differences between Chinese airborne particle counter calibration procedure and other new calibration procedures in other countries, and points ou t the defects of current Chinese national standard.The draft of revised Chinese National Standard is also introduced. The new revised standard, Methods for Test ing the Performance of Airborne Particle Counter, covers two level calibrations: primary and secondary. Primary calibration procedure includes testing 6 kinds of performances:sample airflow rate, false counting, particle size accuracy and re solution, particle counting stability, counting efficiency and particle concentr ation limit. Secondary calibration is a relative comparing test method to verify the counting accuracy of calibrated airborne particle counters.Finally, how to keep the calibration traceability is suggested.
基金supported by the National Natural Science Foundation of China(No.51474216)
文摘In order to improve the utilization rate of foam,an arc jet nozzle was designed for precise dust control.Through theoretical analysis,the different demands of foam were compared amongst arc jets,flat jets and full cone jets when the dust source was covered identically by foam.It is proved that foam consumption was least when an arc jet was used.Foam production capability of an arc jet nozzle under different conditions was investigated through experiments.The results show that with the gas liquid ratio(GLR)increasing,the spray state of an arc jet nozzle presents successively water jet,foam jet and mist.Under a reasonable working condition range of foam production and a fixed GLR,foam production quantity increases at first,and then decreases with the increase of liquid supply quantity.When the inner diameter of the nozzle is 14 mm,the best GLR is 30 and the optimum liquid supply quantity is0.375 m^3/h.The results of field experiments show that the total dust and respirable dust suppression efficiency of arc jet nozzles is 85.8%and 82.6%respectively,which are 1.39 and 1.37 times higher than the full cone nozzles and 1.20 and 1.19 times higher than the fiat nozzles.