基于课题组自主研发的颗粒物检测系统,根据静电感应的原理获得了大量含有随机噪声的粉尘信号。采用自适应噪声对消的方法对粉尘静电感应信号进行提取,并提出一种新的变步长最小均方误差(least mean square,LMS)自适应算法来修改滤波器...基于课题组自主研发的颗粒物检测系统,根据静电感应的原理获得了大量含有随机噪声的粉尘信号。采用自适应噪声对消的方法对粉尘静电感应信号进行提取,并提出一种新的变步长最小均方误差(least mean square,LMS)自适应算法来修改滤波器系数。引入新的步长因子和误差的非线性关系,使算法具有更好的稳态性能,对新算法的机理和参数进行深入分析,更好地提高了低信噪比下算法的收敛速率并保证了稳态时的性能。将该算法用于粉尘静电感应信号的滤波处理,仿真结果证明该算法能很好地滤除随机噪声。展开更多
Particulate emission is a major problem in industrial processes, mainly power plants that make use of coal as a primary source of energy. Stringent emissions limits, set by government organisations requires industries...Particulate emission is a major problem in industrial processes, mainly power plants that make use of coal as a primary source of energy. Stringent emissions limits, set by government organisations requires industries to conform to these limits to ensure that air quality is sustained and with minimum pollutant present. Electrostatic precipitators are typically used to filter and collect these particulate emissions. Fly ash resistivity is a primary parameter in the collection of particulate emissions, and there is a resistivity range at which electrostatic precipitator collection is most efficient and anything outside this range limits, their operation. High resistivity ash results in back-corona discharge, whilst low resistivity results in particle re-entrainment into the flue gas stream. The purpose of this paper is to investigate and obtain a fly ash resistivity profile for existing power plants in South Africa. Ash samples obtained from power plants are, tested making use of an ash-resistivity test oven, in accordance with IEEE Standard 548-1984. This paper discusses obtained experimental results, to determine the resistivity profile at which South African power plant electrostatic precipitators operate. The electrical efficiency of the electrostatic precipitator system is evaluated based on the obtained resistivity profiles.展开更多
文摘基于课题组自主研发的颗粒物检测系统,根据静电感应的原理获得了大量含有随机噪声的粉尘信号。采用自适应噪声对消的方法对粉尘静电感应信号进行提取,并提出一种新的变步长最小均方误差(least mean square,LMS)自适应算法来修改滤波器系数。引入新的步长因子和误差的非线性关系,使算法具有更好的稳态性能,对新算法的机理和参数进行深入分析,更好地提高了低信噪比下算法的收敛速率并保证了稳态时的性能。将该算法用于粉尘静电感应信号的滤波处理,仿真结果证明该算法能很好地滤除随机噪声。
文摘Particulate emission is a major problem in industrial processes, mainly power plants that make use of coal as a primary source of energy. Stringent emissions limits, set by government organisations requires industries to conform to these limits to ensure that air quality is sustained and with minimum pollutant present. Electrostatic precipitators are typically used to filter and collect these particulate emissions. Fly ash resistivity is a primary parameter in the collection of particulate emissions, and there is a resistivity range at which electrostatic precipitator collection is most efficient and anything outside this range limits, their operation. High resistivity ash results in back-corona discharge, whilst low resistivity results in particle re-entrainment into the flue gas stream. The purpose of this paper is to investigate and obtain a fly ash resistivity profile for existing power plants in South Africa. Ash samples obtained from power plants are, tested making use of an ash-resistivity test oven, in accordance with IEEE Standard 548-1984. This paper discusses obtained experimental results, to determine the resistivity profile at which South African power plant electrostatic precipitators operate. The electrical efficiency of the electrostatic precipitator system is evaluated based on the obtained resistivity profiles.