The phenomena of die wall lubricated warm compaction of non-lubricant admixed iron powders were researched, and its mechanism of densification was discussed. Water atomized powder obtained from the Wuhan Iron and Stee...The phenomena of die wall lubricated warm compaction of non-lubricant admixed iron powders were researched, and its mechanism of densification was discussed. Water atomized powder obtained from the Wuhan Iron and Steel Corporation was used. With compacting and sintering, compared with cold compaction, the density of warm compacted samples increases by 0.07 - 0. 22 g/cm^3 at the same pressed pressure. The maximum achievable green density of warm compacted samples is 7.12 g/cm^3 at 120℃, and the maximum sintered density is 7.18 g/cm^3 at 80℃. Compared with cold compaction, the ejection force of warm compaction is smaller; the maximum discrep- ancy is about 7 kN. The warm compacted mechanism of densification of iron powders can be obtained: heating the powder contributes to improving plastic deformation of powder particles, and accelerating the mutual filling and rearrangement of powder particles.展开更多
FVS1212/FVS0812 material was prepared by adding FVS1212 powder into FVS0812 powder. The structure and mechanical properties of materials were studied by means of X-Ray, tensile measurement, OM and SEM. The results sho...FVS1212/FVS0812 material was prepared by adding FVS1212 powder into FVS0812 powder. The structure and mechanical properties of materials were studied by means of X-Ray, tensile measurement, OM and SEM. The results show that adding proper content FVS1212 powders can improve the tensile strength of FVS0812 aluminum at room temperature and elevated temperature, and that the elongation of FVS1212/FVS0812 material is better than that of FVS1212 aluminum.展开更多
文摘The phenomena of die wall lubricated warm compaction of non-lubricant admixed iron powders were researched, and its mechanism of densification was discussed. Water atomized powder obtained from the Wuhan Iron and Steel Corporation was used. With compacting and sintering, compared with cold compaction, the density of warm compacted samples increases by 0.07 - 0. 22 g/cm^3 at the same pressed pressure. The maximum achievable green density of warm compacted samples is 7.12 g/cm^3 at 120℃, and the maximum sintered density is 7.18 g/cm^3 at 80℃. Compared with cold compaction, the ejection force of warm compaction is smaller; the maximum discrep- ancy is about 7 kN. The warm compacted mechanism of densification of iron powders can be obtained: heating the powder contributes to improving plastic deformation of powder particles, and accelerating the mutual filling and rearrangement of powder particles.
文摘FVS1212/FVS0812 material was prepared by adding FVS1212 powder into FVS0812 powder. The structure and mechanical properties of materials were studied by means of X-Ray, tensile measurement, OM and SEM. The results show that adding proper content FVS1212 powders can improve the tensile strength of FVS0812 aluminum at room temperature and elevated temperature, and that the elongation of FVS1212/FVS0812 material is better than that of FVS1212 aluminum.