Additive manufacturing is a new emerging technology which is ideal for low-to-zero waste production, and it is considered to be a green and clean process that has the potential to lower the cost and energy consumption...Additive manufacturing is a new emerging technology which is ideal for low-to-zero waste production, and it is considered to be a green and clean process that has the potential to lower the cost and energy consumption of production. However, the cost of the feedstock for additive manufacturing and the additive manufactured parts is usually very high, which hinders the further application of additive manufacturing, especially for the metal additive manufacturing. The concept of circular metal additive manufacturing involves the recycling of the metal feedstock and the additive manufactured parts leading to the truly zero waste production and the most energy saving. This paper reviews the technologies that help the formation of a circular metal additive manufacturing through recycling of the feedstocks and the damaged metal parts. Reactive metals, such as titanium, tend to be contaminated easily during handling and production. Recycling of the titanium for achieving a circular titanium additive manufacturing is reviewed in detail.展开更多
A new hydrometallurgical process of chlorination-distillation at low temperatures about 100 °C was developed for recovery of valuable metal and environmental protection. This process was used to treat flue dust c...A new hydrometallurgical process of chlorination-distillation at low temperatures about 100 °C was developed for recovery of valuable metal and environmental protection. This process was used to treat flue dust containing arsenic and antimony and satisfactory results were obtained. Over 99% of arsenic and antimony were recovered, and high purity As2O3 and SbCl3 were produced. A metallic alcoholate technique was developed and proved to be of significant to the utilization of antimony resources. Using this technique, a number of antimony oxide powders were prepared, such as high purity and ultrafine Sb2O3, ultrafine Sb2O3-Sb2O5 and Sb2O3-SnO2 composite powders.展开更多
基金Project(51922108)supported by the National Natural Science Foundation of ChinaProject(2019JJ20031)supported by Hunan Natural Science Foundation,ChinaProject(2019SK2061)supported by Hunan Key Research and Development Program,China。
文摘Additive manufacturing is a new emerging technology which is ideal for low-to-zero waste production, and it is considered to be a green and clean process that has the potential to lower the cost and energy consumption of production. However, the cost of the feedstock for additive manufacturing and the additive manufactured parts is usually very high, which hinders the further application of additive manufacturing, especially for the metal additive manufacturing. The concept of circular metal additive manufacturing involves the recycling of the metal feedstock and the additive manufactured parts leading to the truly zero waste production and the most energy saving. This paper reviews the technologies that help the formation of a circular metal additive manufacturing through recycling of the feedstocks and the damaged metal parts. Reactive metals, such as titanium, tend to be contaminated easily during handling and production. Recycling of the titanium for achieving a circular titanium additive manufacturing is reviewed in detail.
文摘A new hydrometallurgical process of chlorination-distillation at low temperatures about 100 °C was developed for recovery of valuable metal and environmental protection. This process was used to treat flue dust containing arsenic and antimony and satisfactory results were obtained. Over 99% of arsenic and antimony were recovered, and high purity As2O3 and SbCl3 were produced. A metallic alcoholate technique was developed and proved to be of significant to the utilization of antimony resources. Using this technique, a number of antimony oxide powders were prepared, such as high purity and ultrafine Sb2O3, ultrafine Sb2O3-Sb2O5 and Sb2O3-SnO2 composite powders.