重点探讨了一种制备 Si C颗粒增强铝基复合材料的新的工艺方法 ,即粉末预制块重熔稀释法。利用普通设备 ,探索了制备工艺过程 ,分析了金相组织。同时与粉末冶金法制备的组织作了比较。结果表明 ,采用粉末预制块重熔稀释、铝液中加活性元...重点探讨了一种制备 Si C颗粒增强铝基复合材料的新的工艺方法 ,即粉末预制块重熔稀释法。利用普通设备 ,探索了制备工艺过程 ,分析了金相组织。同时与粉末冶金法制备的组织作了比较。结果表明 ,采用粉末预制块重熔稀释、铝液中加活性元素 (Mg)、适当提高铝液温度和机械搅拌等方法有效地改善了 Si C颗粒与铝基体的润湿性 ,制备了较为满意的 Si Cp/ Al复合材料。展开更多
Copper, iron and cobalt based pre-alloyed powders for diamond tools were prepared by ultrahigh pressure water atomization(UPWA) process. Pre-alloyed powders prepared by different processes including UPWA, convention...Copper, iron and cobalt based pre-alloyed powders for diamond tools were prepared by ultrahigh pressure water atomization(UPWA) process. Pre-alloyed powders prepared by different processes including UPWA, conventional water atomization (CWA) and elemental metal mechanical mixing (EMMM) were sintered to segments and then compared in mechanical properties, holding force between matrix and diamond, fracture morphology of blank and sintering diamond section containing matrix. The results showed that the pre-alloyed powder prepared by UPWA exhibits the best mechanical properties including the relative density, the hardness and the bending strength of matrix sinteredsegment. Sintered segments fractography of UPWA pre-alloyed powder indicatesmechanical mosaic strength and chemical bonding force between the pre-alloyed powder and the diamond, leading to the great increase in the holding force between matrix and diamond. The mechanical performance andthe service life of diamond tools were greatly improved by UPWA pre-alloyed powders.展开更多
The Ni−MoO_(2) heterostructure was synthesized in suit on porous bulk NiMo alloy by a facile powder metallurgy and hydrothermal method.The results of field emission scanning electron microscopy(SEM),field emission tra...The Ni−MoO_(2) heterostructure was synthesized in suit on porous bulk NiMo alloy by a facile powder metallurgy and hydrothermal method.The results of field emission scanning electron microscopy(SEM),field emission transmission electron microscopy(TEM)and X-ray photoelectron spectroscopy(XPS)reveal that the as-prepared electrode possesses the heterostructure and a layer of Ni(OH)_(2) nanosheets is formed on the surface of Ni−MoO_(2) electrode simultaneously after hydrothermal treatment,which provides abundant interface and much active sites,as well as much active specific surface area.The results of hydrogen evolution reaction indicate that the Ni−MoO_(2) heterostructure electrode exhibits excellent catalytic performance,requiring only 41 mV overpotential to reach the current density of 10 mA/cm^(2).It also possesses a small Tafel slope of 52.7 mV/dec and long-term stability of electrolysis in alkaline medium.展开更多
In order to produce low-cost titanium(Ti)with high productivity,fundamental studies on producing metallic Ti from titanium dioxide(TiO2)in the cold pressed pellets were conducted by metallothermic reduction with an in...In order to produce low-cost titanium(Ti)with high productivity,fundamental studies on producing metallic Ti from titanium dioxide(TiO2)in the cold pressed pellets were conducted by metallothermic reduction with an indirect contact method.This paper focuses on discussing the mechanism of the reduction process and the relationships of RM(a revised reduction index)with reduction temperature,reduction time,and mole ratio of TiO2 to CaCl2(nTiO2/nCaCl2)in the pellets.The results show that metallic Ti was obtained from the reduction of TiO2 in the pellets by calcium(Ca)vapor;pellets were reduced homogenously and Ca vapor diffused into the porous pellets by Knudsen diffusion or the mixing diffusion of molecular diffusion and Knudsen diffusion at 1273 K;RM increased with the increases of temperature and reduction time and was 96.34%when TRedu=1273 K,tRedu=6 h,and nTiO2/nCaCl2=4;the reasonable nTiO2/nCaCl2 value is 3−5 for the pellets with enough strength and high RM.展开更多
文摘探讨了一种制备 Si C颗料增强铝基复合材料的新的工艺方法 ,即粉末预制块重熔稀释法。利用普通设备 ,探索了制备工艺过程 ,分析了金相组织。结果表明 ,采用粉末预制块 ,重熔稀释 ,Al液中加活性元素 Mg,适当提高铝液温度和增加机械搅拌力度等 ,有效地改善了 Si C颗粒与铝基体的润湿性。制备了较为满意的 Si
文摘重点探讨了一种制备 Si C颗粒增强铝基复合材料的新的工艺方法 ,即粉末预制块重熔稀释法。利用普通设备 ,探索了制备工艺过程 ,分析了金相组织。同时与粉末冶金法制备的组织作了比较。结果表明 ,采用粉末预制块重熔稀释、铝液中加活性元素 (Mg)、适当提高铝液温度和机械搅拌等方法有效地改善了 Si C颗粒与铝基体的润湿性 ,制备了较为满意的 Si Cp/ Al复合材料。
基金Projects(2010SK3172,2015JC3005)supported by the Key Program of Science and Technology Project of Hunan Province,China
文摘Copper, iron and cobalt based pre-alloyed powders for diamond tools were prepared by ultrahigh pressure water atomization(UPWA) process. Pre-alloyed powders prepared by different processes including UPWA, conventional water atomization (CWA) and elemental metal mechanical mixing (EMMM) were sintered to segments and then compared in mechanical properties, holding force between matrix and diamond, fracture morphology of blank and sintering diamond section containing matrix. The results showed that the pre-alloyed powder prepared by UPWA exhibits the best mechanical properties including the relative density, the hardness and the bending strength of matrix sinteredsegment. Sintered segments fractography of UPWA pre-alloyed powder indicatesmechanical mosaic strength and chemical bonding force between the pre-alloyed powder and the diamond, leading to the great increase in the holding force between matrix and diamond. The mechanical performance andthe service life of diamond tools were greatly improved by UPWA pre-alloyed powders.
基金the financial supports from the National Natural Science Foundation of China(Nos.52161040,51862026)the Natural Science Foundation of Jiangxi Province,China(Nos.20202ACBL214011,20192ACBL21048)the Aeronautical Science Foundation of China(No.2017ZF56027)。
文摘The Ni−MoO_(2) heterostructure was synthesized in suit on porous bulk NiMo alloy by a facile powder metallurgy and hydrothermal method.The results of field emission scanning electron microscopy(SEM),field emission transmission electron microscopy(TEM)and X-ray photoelectron spectroscopy(XPS)reveal that the as-prepared electrode possesses the heterostructure and a layer of Ni(OH)_(2) nanosheets is formed on the surface of Ni−MoO_(2) electrode simultaneously after hydrothermal treatment,which provides abundant interface and much active sites,as well as much active specific surface area.The results of hydrogen evolution reaction indicate that the Ni−MoO_(2) heterostructure electrode exhibits excellent catalytic performance,requiring only 41 mV overpotential to reach the current density of 10 mA/cm^(2).It also possesses a small Tafel slope of 52.7 mV/dec and long-term stability of electrolysis in alkaline medium.
基金Projects(51774071,50804007,51974073)supported by the National Natural Science Foundation of China。
文摘In order to produce low-cost titanium(Ti)with high productivity,fundamental studies on producing metallic Ti from titanium dioxide(TiO2)in the cold pressed pellets were conducted by metallothermic reduction with an indirect contact method.This paper focuses on discussing the mechanism of the reduction process and the relationships of RM(a revised reduction index)with reduction temperature,reduction time,and mole ratio of TiO2 to CaCl2(nTiO2/nCaCl2)in the pellets.The results show that metallic Ti was obtained from the reduction of TiO2 in the pellets by calcium(Ca)vapor;pellets were reduced homogenously and Ca vapor diffused into the porous pellets by Knudsen diffusion or the mixing diffusion of molecular diffusion and Knudsen diffusion at 1273 K;RM increased with the increases of temperature and reduction time and was 96.34%when TRedu=1273 K,tRedu=6 h,and nTiO2/nCaCl2=4;the reasonable nTiO2/nCaCl2 value is 3−5 for the pellets with enough strength and high RM.