To make assessment on its environmental security, fly ash samples were collected from the gangue power plant. Total content of heavy metals in sieved fly ash were analytically determined. We also carried out Tessier e...To make assessment on its environmental security, fly ash samples were collected from the gangue power plant. Total content of heavy metals in sieved fly ash were analytically determined. We also carried out Tessier extractive experiments to check the chemical species of heavy metals. Experiment results show that the content of Cu, Zn, Pb and Cd ascend when particle size is smaller. Cu, Zn, Pb and Cd obviously enrich in particulate fly ash. The chemical species of heavy metal distribution ranking sequence generally is residual〉organic combinative〉Fe-Mn oxide combinative〉carbonate combinative〉ion-exchangeable. Lead's amiable-move species were high in proportion, amounted to 35%. Total content of Cadmium is at low level, but its ion-exchangeable species is relatively high in proportion. Nickel and zinc is mainly distributed in residue. Cu is mainly distributed in residue and organic combinative form. The content of manganese is relatively high in fly ash, and the carbonate combinative iron-manganese oxide combinative species are main chemical form. Cr is mainly distributed in residue, and its other chemical species are at low level. Compared with the soil background value of study area and Shandong Province, the content of Cu, Ni, Zn, Mn and Cr in fly ash of gangue power plant is lower. While contents of Pb and Cd were higher than background value, and amiable-move species is relatively high in proportion. They are more apt to cause heavy metal pollution.展开更多
Three fresh China coals (lignitie, bituminite and anthracite) from different geological origin and the corresponding fly and bottom ashes were studied by room temperature(RT) Mossbauer spectroscopy(MS). The iron...Three fresh China coals (lignitie, bituminite and anthracite) from different geological origin and the corresponding fly and bottom ashes were studied by room temperature(RT) Mossbauer spectroscopy(MS). The iron-bearing minerals were characterized to be mainly pyrite in all coal samples by the hyperfine parameters.Suphate(FeSO4·nH2O) was found in bituminite and anthracite coal.The MSssbauer spectra of the fly and bottom ashes as a result of pulverised coal combustion(PCC) in Xiaolongtan,Shuicheng and Luohuang Power Plants are comprised of superimposed sextets and doulets of oxides includes maghemite(γ-Fe2O3), magnitite(Fe3O4), haematite(α-Fe2O3), magnesioferite (MgFe2O4), Fe^3+/Fe^2+ -mullite, Fe^3+ -glass silicate and metallic iron. The studies also show that iron-bearing minerals in coals are largely dependant on geological regions and coal rank, the composition of the corresponding fly and bottom ashes will not only depend on the type and mineralogy of the feed coal but also on the local nature of combustion.展开更多
In this paper, the results of an extensive investigation of hydrothermal pre-treatment for synthesizing belite phase from reactive mixtures (CaO/SiO2 molar ratio of 2) consisting of one waste kinds (bottom ash-BA o...In this paper, the results of an extensive investigation of hydrothermal pre-treatment for synthesizing belite phase from reactive mixtures (CaO/SiO2 molar ratio of 2) consisting of one waste kinds (bottom ash-BA or fly ash-FA) from fluidised brown coal combustion in Slovakian power plant and CaO (analytical grade reagent) addition are summarized. Changes in structure and phase composition of hydrothermally synthesized belite precursors and subsequent calcinated products were compared with those of starting mixtures. Based on XRD diffraction patterns, the formation of the new profiles corresponding to CSH phases with low degree of ordering as belite precursors after hydrothermal treatment was confirmed. Calcination of hydrotermally treated products at 900℃ led to transformation of CSH phases to wollastonite, belite and gehlenite phase. Differences in phase composition of products before and after calcination depend upon waste quality and precursor's synthesis conditions. Bottom ash isn't suitable as raw material for synthesizing belite phase because of high CaO content fixed in anhydrite form (44.1%). Coal fly ash with low CaO content in anhydrite form (4.2%) and its hydrothermal treatment in combination with subsequent heating offer opportunities for the utilization of coal fly ash as raw material for belite production.展开更多
The physical,chemical and mineral facies properties of the flyash from Xiezhuang Coal Refuse Fired Power Plant have been studied by means of naked eyes,microscope,chemical composition analysis and XRD analysis,and com...The physical,chemical and mineral facies properties of the flyash from Xiezhuang Coal Refuse Fired Power Plant have been studied by means of naked eyes,microscope,chemical composition analysis and XRD analysis,and compared with that of the flyash from Taian Coal Fired Power Plant.The result shows that the flyash from coal refuse fired power plant is of better quality in making construction items,for being brighter in color,fine and high activity.Some ways of comprehensive utilization of the ash have been suggested in this paper.展开更多
文摘To make assessment on its environmental security, fly ash samples were collected from the gangue power plant. Total content of heavy metals in sieved fly ash were analytically determined. We also carried out Tessier extractive experiments to check the chemical species of heavy metals. Experiment results show that the content of Cu, Zn, Pb and Cd ascend when particle size is smaller. Cu, Zn, Pb and Cd obviously enrich in particulate fly ash. The chemical species of heavy metal distribution ranking sequence generally is residual〉organic combinative〉Fe-Mn oxide combinative〉carbonate combinative〉ion-exchangeable. Lead's amiable-move species were high in proportion, amounted to 35%. Total content of Cadmium is at low level, but its ion-exchangeable species is relatively high in proportion. Nickel and zinc is mainly distributed in residue. Cu is mainly distributed in residue and organic combinative form. The content of manganese is relatively high in fly ash, and the carbonate combinative iron-manganese oxide combinative species are main chemical form. Cr is mainly distributed in residue, and its other chemical species are at low level. Compared with the soil background value of study area and Shandong Province, the content of Cu, Ni, Zn, Mn and Cr in fly ash of gangue power plant is lower. While contents of Pb and Cd were higher than background value, and amiable-move species is relatively high in proportion. They are more apt to cause heavy metal pollution.
文摘Three fresh China coals (lignitie, bituminite and anthracite) from different geological origin and the corresponding fly and bottom ashes were studied by room temperature(RT) Mossbauer spectroscopy(MS). The iron-bearing minerals were characterized to be mainly pyrite in all coal samples by the hyperfine parameters.Suphate(FeSO4·nH2O) was found in bituminite and anthracite coal.The MSssbauer spectra of the fly and bottom ashes as a result of pulverised coal combustion(PCC) in Xiaolongtan,Shuicheng and Luohuang Power Plants are comprised of superimposed sextets and doulets of oxides includes maghemite(γ-Fe2O3), magnitite(Fe3O4), haematite(α-Fe2O3), magnesioferite (MgFe2O4), Fe^3+/Fe^2+ -mullite, Fe^3+ -glass silicate and metallic iron. The studies also show that iron-bearing minerals in coals are largely dependant on geological regions and coal rank, the composition of the corresponding fly and bottom ashes will not only depend on the type and mineralogy of the feed coal but also on the local nature of combustion.
文摘In this paper, the results of an extensive investigation of hydrothermal pre-treatment for synthesizing belite phase from reactive mixtures (CaO/SiO2 molar ratio of 2) consisting of one waste kinds (bottom ash-BA or fly ash-FA) from fluidised brown coal combustion in Slovakian power plant and CaO (analytical grade reagent) addition are summarized. Changes in structure and phase composition of hydrothermally synthesized belite precursors and subsequent calcinated products were compared with those of starting mixtures. Based on XRD diffraction patterns, the formation of the new profiles corresponding to CSH phases with low degree of ordering as belite precursors after hydrothermal treatment was confirmed. Calcination of hydrotermally treated products at 900℃ led to transformation of CSH phases to wollastonite, belite and gehlenite phase. Differences in phase composition of products before and after calcination depend upon waste quality and precursor's synthesis conditions. Bottom ash isn't suitable as raw material for synthesizing belite phase because of high CaO content fixed in anhydrite form (44.1%). Coal fly ash with low CaO content in anhydrite form (4.2%) and its hydrothermal treatment in combination with subsequent heating offer opportunities for the utilization of coal fly ash as raw material for belite production.
文摘The physical,chemical and mineral facies properties of the flyash from Xiezhuang Coal Refuse Fired Power Plant have been studied by means of naked eyes,microscope,chemical composition analysis and XRD analysis,and compared with that of the flyash from Taian Coal Fired Power Plant.The result shows that the flyash from coal refuse fired power plant is of better quality in making construction items,for being brighter in color,fine and high activity.Some ways of comprehensive utilization of the ash have been suggested in this paper.