In order to enhance the mechanical properties of the selective laser-melted(SLM) high-Mg content AlSiMg1.4 alloy,the Zr element was introduced.The influence of Zr alloying on the processability,microstructure,and mech...In order to enhance the mechanical properties of the selective laser-melted(SLM) high-Mg content AlSiMg1.4 alloy,the Zr element was introduced.The influence of Zr alloying on the processability,microstructure,and mechanical properties of the alloy was systematically investigated through performing microstructure analysis and tensile testing.It was demonstrated that the SLM-fabricated AlSiMg1.4-Zr alloy exhibited high process stability with a relative density of over 99.5% at various process parameters.Besides,the strong grain refinement induced by the primary Al3Zr particle during the melt solidification process simultaneously enhanced both the strength and plasticity of the alloy.The values for the yield strength,ultimate tensile strength,and elongation of the SLM-fabricated AlSiMg1.4-Zr were(343±3) MPa,(485±4) MPa,and(10.2±0.2)%,respectively,demonstrating good strengthplasticity synergy in comparison to the AlSiMg1.4 and other Al-Si-based alloys fabricated by SLM.展开更多
To improve the poor stability of casting process of Al alloy with high Mg content, which leads to poor final product quality, the melting purification process and the influences of the refiner on the microstructure an...To improve the poor stability of casting process of Al alloy with high Mg content, which leads to poor final product quality, the melting purification process and the influences of the refiner on the microstructure and defect of 5083 alloy were studied. The results show that the optimized process for the rotary impeller degassing of 5083 alloy is as follows: a rotary speed of 250-400 r/min; a gas flow of 1.2-2.0 L/s, a refining time of 10-15 min. This optimized process can reduce the gas content in the solid alloy to 2× 10^-3 mL/g or lower. Due to the addition of grain refiner, the cast microstructure of 5083 alloy is refined. The Al-5Ti-IB wire shows the best refining effect among all the refiners. The refining effect is improved with the increase of grain refiner addition amount. And the refinement effects become stable when Ti content reaches 0.1% or higher. The surface crinkling defect of the billet can be easily found in the alloy refined with Al-5Ti-IB wire compared with the alloys refined with other refiners.展开更多
A new severe plastic deformation (SPD) method that is extrusion-shearing (ES), which includes initial forward extrusion and shearing process subsequently, was developed to fabricate the fine grained AZ31 Mg alloys...A new severe plastic deformation (SPD) method that is extrusion-shearing (ES), which includes initial forward extrusion and shearing process subsequently, was developed to fabricate the fine grained AZ31 Mg alloys. The components of ES die were manufactured and installed to gleeble1500D thermo-mechanical simulator. Microstructure observations were carried out in different positions of ES formed rods. The results show that homogeneous microstructures with mean grain size of 2 μm are obtained at lower temperature as the accumulated true strain is 2.44. Occurring of continuous dynamic recrystallization (DRX) is the main reason for grain refinement during ES process. The experimental results show that the ES process effectively refines the grains of AZ31 magnesium. The production results of ES extrusion with industrial extruder under different extrusion conditions show that the ES extrusion can be applied in large-scale industry.展开更多
An Al-3Ti-0.2C-1RE grain refiner was prepared by in-situ reaction method.The microstructure was investigated by optical microscopy(OM),scanning electron microscopy(SEM) equipped with energy-dispersive spectrometry(EDS...An Al-3Ti-0.2C-1RE grain refiner was prepared by in-situ reaction method.The microstructure was investigated by optical microscopy(OM),scanning electron microscopy(SEM) equipped with energy-dispersive spectrometry(EDS) and X-ray diffraction(XRD).The results show that the Al-3Ti-0.2C-1RE grain refiner is composed of α-Al,TiAl3,TiC and Ti2 Al20 Ce phases.Compared with Al-3Ti-0.2C refiner,the morphology of TiAl3 phase is changed and Ti2 Al20 Ce phases form with the addition of RE.Accordingly,the refining performance is improved.The phase forming process of the refiner is as follows: Blocky Ti2 Al20 Ce and fine blocky TiAl3 form in the melt at the initial stage of reaction,then the fine blocky TiAl3 gradually disappears,and the blocky Ti2 Al20 Ce grows bigger with the increase of holding time.The predominant mechanism to synthesize TiC particles is the reaction between high concentration of solute Ti atoms and graphite particles.展开更多
基金supported by the National Natural Science Foundation of China (Nos.51801079, 52001140)。
文摘In order to enhance the mechanical properties of the selective laser-melted(SLM) high-Mg content AlSiMg1.4 alloy,the Zr element was introduced.The influence of Zr alloying on the processability,microstructure,and mechanical properties of the alloy was systematically investigated through performing microstructure analysis and tensile testing.It was demonstrated that the SLM-fabricated AlSiMg1.4-Zr alloy exhibited high process stability with a relative density of over 99.5% at various process parameters.Besides,the strong grain refinement induced by the primary Al3Zr particle during the melt solidification process simultaneously enhanced both the strength and plasticity of the alloy.The values for the yield strength,ultimate tensile strength,and elongation of the SLM-fabricated AlSiMg1.4-Zr were(343±3) MPa,(485±4) MPa,and(10.2±0.2)%,respectively,demonstrating good strengthplasticity synergy in comparison to the AlSiMg1.4 and other Al-Si-based alloys fabricated by SLM.
基金Project(12511075)supported by the Foundation of Heilongjiang Education Committee,China
文摘To improve the poor stability of casting process of Al alloy with high Mg content, which leads to poor final product quality, the melting purification process and the influences of the refiner on the microstructure and defect of 5083 alloy were studied. The results show that the optimized process for the rotary impeller degassing of 5083 alloy is as follows: a rotary speed of 250-400 r/min; a gas flow of 1.2-2.0 L/s, a refining time of 10-15 min. This optimized process can reduce the gas content in the solid alloy to 2× 10^-3 mL/g or lower. Due to the addition of grain refiner, the cast microstructure of 5083 alloy is refined. The Al-5Ti-IB wire shows the best refining effect among all the refiners. The refining effect is improved with the increase of grain refiner addition amount. And the refinement effects become stable when Ti content reaches 0.1% or higher. The surface crinkling defect of the billet can be easily found in the alloy refined with Al-5Ti-IB wire compared with the alloys refined with other refiners.
基金Project (2007CB613700) supported by the National Basic Research Program of ChinaProject (50725413)supported by the National Natural Science Foundation of China+2 种基金Project (CQ CSTC,2010BB4301)supported by National Science Foundation of Chongqing, ChinaProject (CSTC2009AB4008) supported by Chongqing Sci & Tech Development Program, ChinaProject (2010CSTC-HDLS)supported by Chongqing Sci & Tech Commission, China
文摘A new severe plastic deformation (SPD) method that is extrusion-shearing (ES), which includes initial forward extrusion and shearing process subsequently, was developed to fabricate the fine grained AZ31 Mg alloys. The components of ES die were manufactured and installed to gleeble1500D thermo-mechanical simulator. Microstructure observations were carried out in different positions of ES formed rods. The results show that homogeneous microstructures with mean grain size of 2 μm are obtained at lower temperature as the accumulated true strain is 2.44. Occurring of continuous dynamic recrystallization (DRX) is the main reason for grain refinement during ES process. The experimental results show that the ES process effectively refines the grains of AZ31 magnesium. The production results of ES extrusion with industrial extruder under different extrusion conditions show that the ES extrusion can be applied in large-scale industry.
基金Project(51174177)supported by the National Natural Science Foundation of China
文摘An Al-3Ti-0.2C-1RE grain refiner was prepared by in-situ reaction method.The microstructure was investigated by optical microscopy(OM),scanning electron microscopy(SEM) equipped with energy-dispersive spectrometry(EDS) and X-ray diffraction(XRD).The results show that the Al-3Ti-0.2C-1RE grain refiner is composed of α-Al,TiAl3,TiC and Ti2 Al20 Ce phases.Compared with Al-3Ti-0.2C refiner,the morphology of TiAl3 phase is changed and Ti2 Al20 Ce phases form with the addition of RE.Accordingly,the refining performance is improved.The phase forming process of the refiner is as follows: Blocky Ti2 Al20 Ce and fine blocky TiAl3 form in the melt at the initial stage of reaction,then the fine blocky TiAl3 gradually disappears,and the blocky Ti2 Al20 Ce grows bigger with the increase of holding time.The predominant mechanism to synthesize TiC particles is the reaction between high concentration of solute Ti atoms and graphite particles.