期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于递减概率初始点选择K中心点进化算法
被引量:
3
1
作者
路浩
倪世宏
+1 位作者
查翔
张鹏
《计算机仿真》
CSCD
北大核心
2014年第9期314-318,共5页
粒子群优化(PSO)的K-Medoids进化聚类算法中初始种群是随机产生的,导致选择的初始中心点有可能位于同一类簇中。为提高聚类准确性,提出一种采用递减概率化初始点选择的PSO与K-Medoids结合新算法。根据样本的分布密度设置对应的选择概率...
粒子群优化(PSO)的K-Medoids进化聚类算法中初始种群是随机产生的,导致选择的初始中心点有可能位于同一类簇中。为提高聚类准确性,提出一种采用递减概率化初始点选择的PSO与K-Medoids结合新算法。根据样本的分布密度设置对应的选择概率,并由轮盘赌策略依次选择中心点,使获得的中心点位于密度较高区域且在不同的簇中,同时又实现了初始种群的多样性。在人工和UCI真实数据集上的实验结果表明,改进后的算法有更快的收敛速度,提高了聚类准确率和稳定性。
展开更多
关键词
递减概率化
粒子优化替换
粒子
群
优化
下载PDF
职称材料
题名
基于递减概率初始点选择K中心点进化算法
被引量:
3
1
作者
路浩
倪世宏
查翔
张鹏
机构
空军工程大学航空航天工程学院
出处
《计算机仿真》
CSCD
北大核心
2014年第9期314-318,共5页
文摘
粒子群优化(PSO)的K-Medoids进化聚类算法中初始种群是随机产生的,导致选择的初始中心点有可能位于同一类簇中。为提高聚类准确性,提出一种采用递减概率化初始点选择的PSO与K-Medoids结合新算法。根据样本的分布密度设置对应的选择概率,并由轮盘赌策略依次选择中心点,使获得的中心点位于密度较高区域且在不同的簇中,同时又实现了初始种群的多样性。在人工和UCI真实数据集上的实验结果表明,改进后的算法有更快的收敛速度,提高了聚类准确率和稳定性。
关键词
递减概率化
粒子优化替换
粒子
群
优化
Keywords
Decreasing-probability
Optimizing replace of particles
Particle swarm optimization (PSO)
分类号
TP181 [自动化与计算机技术—控制理论与控制工程]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于递减概率初始点选择K中心点进化算法
路浩
倪世宏
查翔
张鹏
《计算机仿真》
CSCD
北大核心
2014
3
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部