A multifunctional Cu2O/Ag micro-nanocomposite, which has the characteristics of high cat- alytic activities under the visible light and high surface-enhanced Raman scattering (SERS) activity, was fabricated via a fa...A multifunctional Cu2O/Ag micro-nanocomposite, which has the characteristics of high cat- alytic activities under the visible light and high surface-enhanced Raman scattering (SERS) activity, was fabricated via a facile method and employed for the in situ SERS monitoring of the photocatalytic degradation reaction of crystal violet. Through the variation of the AgNO3 concentration, Ag content on the Cu2O template can be controllably tuned, which has great influence on the SERS effect. The results indicate that Ag nanopartieles form on the Cu2O nanoframes to obtain the Cu2O/Ag nanoeomposite, which can act as an excellent bifunetional platform for in situ monitoring of photocatalytic degradation of organic pollutions by SERS.展开更多
Advantges and disadvantage of Mie scattering model and Fraunhofer diffraction model are discussed. The result shows that 1) the Fraunhofer diffraction model is simple in design and fast in operation, which is quite su...Advantges and disadvantage of Mie scattering model and Fraunhofer diffraction model are discussed. The result shows that 1) the Fraunhofer diffraction model is simple in design and fast in operation, which is quite suitable for on-line control and 2) the intensity and energy distribution of diffracted light of both the Mie scattering model and the Fraunhofer theoretical model are compared and researched. Feasibility of using the Fraunhofer diffraction model to replace the Mie scattering model in measuring particles in coal water slurry is demonstrated.展开更多
A novel method combining visualization particle tracking with image-based dynamic light scattering was developed to achieve the in situ and real-time size measurement of nanobubbles(NBs).First,the in situ size distrib...A novel method combining visualization particle tracking with image-based dynamic light scattering was developed to achieve the in situ and real-time size measurement of nanobubbles(NBs).First,the in situ size distribution of NBs was visualized by dark-field microscopy.Then,real-time size during the preparation was measured using image-based dynamic light scattering,and the longitudinal size distribution of NBs in the sample cell was obtained in a steady state.Results show that this strategy can provide a detailed and accurate size of bubbles in the whole sample compared with the commercial ZetaSizer Nano equipment.Therefore,the developed method is a real-time and simple technology with excellent accuracy,providing new insights into the accurate measurement of the size distribution of NBs or nanoparticles in solution.展开更多
A method to control the size of nanoscale silicon grown in thermally annealed hydrogenated amorphous silicon (a-Si:H) films is reported. Using the characterizing techniques of micro-Raman scattering, X-ray diffract...A method to control the size of nanoscale silicon grown in thermally annealed hydrogenated amorphous silicon (a-Si:H) films is reported. Using the characterizing techniques of micro-Raman scattering, X-ray diffraction and computer simulation, it is found that the sizes of the formed silicon particles change with the temperature rising rate in thermally annealing the a-Si : H films. When the a-Si:H films have been annealed with high rising rate(~100℃/s), the sizes of nanoscale silicon particles are in the range of 1.6~15nm. On the other hand, if the a-Si:H films have been annealed with low temperature rising rate(~1℃/s), the sizes of nanoscale silicon particles are in the range of 23~46nm. Based on the theory of crystal nucleation and growth, the effect of temperature rising rate on the sizes of the formed silicon particles is discussed. Under high power laser irradiation, in situ nanocrystallization and subsequent nc-Si clusters are small enough for visible light emission, authors have not detected any visible photoluminescence(PL) from these nc-Si clusters before surface passivation. After electrochemical oxidization in hydrofluoric acid, however, intense red PL has been detected. Cyclic hydrofluoric oxidization and air exposure can cause subsequent blue shift in the red emission. The importance of surface passivation and quantum confinement in the visible emissions has been discussed.展开更多
Glucose is directly related to brain activity and to diabetes. Therefore, developing a rapid and sensitive method for glucose de- tection is essential. Here, label-free glucose detection at attomole levels was realize...Glucose is directly related to brain activity and to diabetes. Therefore, developing a rapid and sensitive method for glucose de- tection is essential. Here, label-free glucose detection at attomole levels was realized by detecting the average diameter change of gold nanoparticles (AuNPs) utilizing dynamic light scattering (DLS). Single-strand DNA (ssDNA) adsorbed into the AuNPs' surfaces and prevented them from aggregating in solution that contained NaC1. However, ssDNA cleaved onto ssDNA fragments upon addition of glucose, and these fragments could not adsorb onto the AuNPs' surfaces. Therefore, in high-salt solution, AuNPs would aggregate and their average diameter would increase. Based on monitoring the average diameter of AuNPs with DLS, glucose could be detected in the range from 15 pmol/L to 2.0 nmol/L, with a detection limit of 8.3 pmol/L. Satisfactory results were also obtained when the proposed method was applied in human serum glucose detection.展开更多
Nanoparticles have recendy attracted extensive attention in view of their great potential in biomedicine and bioanalytical applications. Single particle detection via light scattering offers a simple and efficient app...Nanoparticles have recendy attracted extensive attention in view of their great potential in biomedicine and bioanalytical applications. Single particle detection via light scattering offers a simple and efficient approach for the size, size distribution, and concentration analysis of nanoparticles. In particular, intrinsic heterogeneity or rare events masked by ensemble averaging can be revealed. However, the sixth power dependence of Rayleigh scattering on particle size makes it very challenging to detect individual nanoparficles of small sizes. This article is intended to provide an overview of recent progress in the development of techniques based on light scattering for the detection of single nanoparticles.展开更多
With the aids of SEM,XPS measurements,localized plasmon resonance light scattering(PRLS) spectrometry and light scattering imaging,investigations on the amalgamation process of both cetyltrimethylammonium bromide(CTAB...With the aids of SEM,XPS measurements,localized plasmon resonance light scattering(PRLS) spectrometry and light scattering imaging,investigations on the amalgamation process of both cetyltrimethylammonium bromide(CTAB) and citrate-coated gold nanoparticles(AuNPs) in the presence of Hg2+ showed that the Au-Hg amalgam process of gold nanoparticles is surface coating dependent in aqueous medium,and the scattering light color change of AuNPs under a dark-field microscope is blue-shifted from red-orange into yellow-orange or even yellow.The former one involves the reduction of Hg2+ to Hg0 species and adsorption of Hg0 on the surfaces of AuNPs,while the later one indicates the shape-evolution of AuNPs.展开更多
The localized surface plasmon resonance of gold nanoparticles enables them to be excellent light scattering sensing reagents and efficient lignt-heat convertors for potential diagnostics and therapeutics.In this work,...The localized surface plasmon resonance of gold nanoparticles enables them to be excellent light scattering sensing reagents and efficient lignt-heat convertors for potential diagnostics and therapeutics.In this work,gold nanoparticles of 15 nm in size were synthesized and conjugated with a kind of arginine-glycine-aspartic acid peptide(RGD)to target the cancer cells.Under a conventional dark field microscope,the scattering images from normal and cancer cells are very different.Only a few of gold nanoparticles bind to the membrane of normal cells due to nonspecific interaction.Yet for cancer cells,the concentration of gold nanoparticles inside cancer cells is much higher than that inside normal cells,showing a strong light scattering signal.By exposing these cells to an external laser irradiation,cancer cells were selectively destructed because of the heat conversion of gold nanoparticles inside them,but normal cells still kept alive due to the absence of gold nanoparticles in them.These results incidated that gold nanoparticles might be potential contrast reagents for targeted cancer imaging and laser therapy.展开更多
基金This work was supported by tile Key Projects of Natural Science Research of Universities in Anhui Province (No.KJ2015A183, No.KJ2015A201) and Talents Foundation of Hefei University (No.15RC05), Anhui Province Natural Science Foundation (No.1608085MD78), the Key Projects of Anhui Province University Outstanding Youth Talent Support Program (gxyqZD2016274), the National Natural Science Foundation of China (No.21305142, No.51403048).
文摘A multifunctional Cu2O/Ag micro-nanocomposite, which has the characteristics of high cat- alytic activities under the visible light and high surface-enhanced Raman scattering (SERS) activity, was fabricated via a facile method and employed for the in situ SERS monitoring of the photocatalytic degradation reaction of crystal violet. Through the variation of the AgNO3 concentration, Ag content on the Cu2O template can be controllably tuned, which has great influence on the SERS effect. The results indicate that Ag nanopartieles form on the Cu2O nanoframes to obtain the Cu2O/Ag nanoeomposite, which can act as an excellent bifunetional platform for in situ monitoring of photocatalytic degradation of organic pollutions by SERS.
文摘Advantges and disadvantage of Mie scattering model and Fraunhofer diffraction model are discussed. The result shows that 1) the Fraunhofer diffraction model is simple in design and fast in operation, which is quite suitable for on-line control and 2) the intensity and energy distribution of diffracted light of both the Mie scattering model and the Fraunhofer theoretical model are compared and researched. Feasibility of using the Fraunhofer diffraction model to replace the Mie scattering model in measuring particles in coal water slurry is demonstrated.
基金The National Key Research and Development Program of China(No.2017YFA0104302)the National Natural Science Foundation of China(No.51832001,61821002,81971750).
文摘A novel method combining visualization particle tracking with image-based dynamic light scattering was developed to achieve the in situ and real-time size measurement of nanobubbles(NBs).First,the in situ size distribution of NBs was visualized by dark-field microscopy.Then,real-time size during the preparation was measured using image-based dynamic light scattering,and the longitudinal size distribution of NBs in the sample cell was obtained in a steady state.Results show that this strategy can provide a detailed and accurate size of bubbles in the whole sample compared with the commercial ZetaSizer Nano equipment.Therefore,the developed method is a real-time and simple technology with excellent accuracy,providing new insights into the accurate measurement of the size distribution of NBs or nanoparticles in solution.
文摘A method to control the size of nanoscale silicon grown in thermally annealed hydrogenated amorphous silicon (a-Si:H) films is reported. Using the characterizing techniques of micro-Raman scattering, X-ray diffraction and computer simulation, it is found that the sizes of the formed silicon particles change with the temperature rising rate in thermally annealing the a-Si : H films. When the a-Si:H films have been annealed with high rising rate(~100℃/s), the sizes of nanoscale silicon particles are in the range of 1.6~15nm. On the other hand, if the a-Si:H films have been annealed with low temperature rising rate(~1℃/s), the sizes of nanoscale silicon particles are in the range of 23~46nm. Based on the theory of crystal nucleation and growth, the effect of temperature rising rate on the sizes of the formed silicon particles is discussed. Under high power laser irradiation, in situ nanocrystallization and subsequent nc-Si clusters are small enough for visible light emission, authors have not detected any visible photoluminescence(PL) from these nc-Si clusters before surface passivation. After electrochemical oxidization in hydrofluoric acid, however, intense red PL has been detected. Cyclic hydrofluoric oxidization and air exposure can cause subsequent blue shift in the red emission. The importance of surface passivation and quantum confinement in the visible emissions has been discussed.
基金supported by the National Natural Science Foundation of China(21305053)the Natural Science Fund for Colleges and Universities in Jiangsu Province(13KJB150015)+2 种基金the Natural Science Fund in Jiangsu Province(BK20130227)the Scientific Research Support Project for Teachers with Doctor’s Degrees(Jiangsu Normal University,China,12XLR022)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Glucose is directly related to brain activity and to diabetes. Therefore, developing a rapid and sensitive method for glucose de- tection is essential. Here, label-free glucose detection at attomole levels was realized by detecting the average diameter change of gold nanoparticles (AuNPs) utilizing dynamic light scattering (DLS). Single-strand DNA (ssDNA) adsorbed into the AuNPs' surfaces and prevented them from aggregating in solution that contained NaC1. However, ssDNA cleaved onto ssDNA fragments upon addition of glucose, and these fragments could not adsorb onto the AuNPs' surfaces. Therefore, in high-salt solution, AuNPs would aggregate and their average diameter would increase. Based on monitoring the average diameter of AuNPs with DLS, glucose could be detected in the range from 15 pmol/L to 2.0 nmol/L, with a detection limit of 8.3 pmol/L. Satisfactory results were also obtained when the proposed method was applied in human serum glucose detection.
基金supported by the National Natural Science Foundation of China (20675070, 20975087, 90913015 & 21027010)Program for New Century Excellent Talents in University (NCET-07-0729)+1 种基金Research Fund for the Doctoral Program of Higher Education of China (20090121120008 & 20090121110009)the National Fund for Fostering Talents of Basic Science (J1030415)
文摘Nanoparticles have recendy attracted extensive attention in view of their great potential in biomedicine and bioanalytical applications. Single particle detection via light scattering offers a simple and efficient approach for the size, size distribution, and concentration analysis of nanoparticles. In particular, intrinsic heterogeneity or rare events masked by ensemble averaging can be revealed. However, the sixth power dependence of Rayleigh scattering on particle size makes it very challenging to detect individual nanoparficles of small sizes. This article is intended to provide an overview of recent progress in the development of techniques based on light scattering for the detection of single nanoparticles.
基金supported by the National Natural Science Foundation of China (21035005)Postgraduate Science and Technology Innovation Program of Southwest China University (2009004)
文摘With the aids of SEM,XPS measurements,localized plasmon resonance light scattering(PRLS) spectrometry and light scattering imaging,investigations on the amalgamation process of both cetyltrimethylammonium bromide(CTAB) and citrate-coated gold nanoparticles(AuNPs) in the presence of Hg2+ showed that the Au-Hg amalgam process of gold nanoparticles is surface coating dependent in aqueous medium,and the scattering light color change of AuNPs under a dark-field microscope is blue-shifted from red-orange into yellow-orange or even yellow.The former one involves the reduction of Hg2+ to Hg0 species and adsorption of Hg0 on the surfaces of AuNPs,while the later one indicates the shape-evolution of AuNPs.
基金supported by the National Natural Science Foundation of China(Grant No.81071256)the Natural Science Foundation of Jiangsu Province(Grant No.BK2008400)the Startup Foundation of NUAA
文摘The localized surface plasmon resonance of gold nanoparticles enables them to be excellent light scattering sensing reagents and efficient lignt-heat convertors for potential diagnostics and therapeutics.In this work,gold nanoparticles of 15 nm in size were synthesized and conjugated with a kind of arginine-glycine-aspartic acid peptide(RGD)to target the cancer cells.Under a conventional dark field microscope,the scattering images from normal and cancer cells are very different.Only a few of gold nanoparticles bind to the membrane of normal cells due to nonspecific interaction.Yet for cancer cells,the concentration of gold nanoparticles inside cancer cells is much higher than that inside normal cells,showing a strong light scattering signal.By exposing these cells to an external laser irradiation,cancer cells were selectively destructed because of the heat conversion of gold nanoparticles inside them,but normal cells still kept alive due to the absence of gold nanoparticles in them.These results incidated that gold nanoparticles might be potential contrast reagents for targeted cancer imaging and laser therapy.