In this paper, particle image velocimetry (PIV) was used to measure the mean and root meansquare(RMS) velocity in the stirred tank with six-flat blade Rushton turbine and with no baffles. Two typesof motion patterns w...In this paper, particle image velocimetry (PIV) was used to measure the mean and root meansquare(RMS) velocity in the stirred tank with six-flat blade Rushton turbine and with no baffles. Two typesof motion patterns were studied. One was that the impeller runs at constant speed, the other was that the impellerruns at time-dependent speed and in a periodic way. The emphasis of the paper was on the comparison of meanand RMS velocity vector maps and profiles between these two types of motion patterns, and especial attention waspaid to the comparison of the mean velocity, time-averaged RMS velocity, phase averaged RMS velocity betweenthe constant 3 RPS (revolution per second) and time-dependent operation. The Reynolds number was between 763and 1527. The study explained the mechanism that time-dependent RPS is more efficient for mixing than that ofconstant RPS.展开更多
A developed stereo particle image velocimetry(stereo-PIV) system was proposed to measure three-dimensional(3D) soil deformation around a laterally loaded pile in sand.The stereo-PIV technique extended 2D measurement t...A developed stereo particle image velocimetry(stereo-PIV) system was proposed to measure three-dimensional(3D) soil deformation around a laterally loaded pile in sand.The stereo-PIV technique extended 2D measurement to 3D based on a binocular vision model,where two cameras with a well geometrical setting were utilized to image the same object simultaneously.This system utilized two open software packages and some simple programs in MATLAB,which can easily be adjusted to meet user needs at a low cost.The failure planes form an angle with the horizontal line,which are measured at 27°-29°,approximately three-fourths of the frictional angle of soil.The edge of the strain wedge formed in front of the pile is an arc,which is slightly different from the straight line reported in the literature.The active and passive influence zones are about twice and six times of the diameter of the pile,respectively.The test demonstrates the good performance and feasibility of this stereo-PIV system for more advanced geotechnical testing.展开更多
Experimental tests were conducted to evaluate the hydrodynamic performance of an L-type podded propulsor in straight-ahead motion and off-design conditions using an open-water measuring instrument developed by the aut...Experimental tests were conducted to evaluate the hydrodynamic performance of an L-type podded propulsor in straight-ahead motion and off-design conditions using an open-water measuring instrument developed by the authors for podded propulsors, a ship model towing tank, and under water particle image velocimetry (PIV) measurement systems. Under the three types of conditions, the main parameters of an L-type podded propulsor were measured, including the propeller thrust and torque, as well as the thrust, side force, and moment of the whole pod unit.In addition, the flow field on the section between the propeller and the strut was analyzed. Experimental results demonstrate that the dynamic azimuthing rate and direction and the turning direction affect the forces on the propeller and the whole pod unit. Forces are asymmetrically distributed between the left and right azimuthing directions because of the effect of propeller rotation. The findings of this study provide a foundation for further research on L-type podded propulsors.展开更多
This paper is focused on the problem of the ability of seeding particles to follow the flow field. One of the most important factors influencing the resultant accuracy of the measurement is using the proper seeding pa...This paper is focused on the problem of the ability of seeding particles to follow the flow field. One of the most important factors influencing the resultant accuracy of the measurement is using the proper seeding particles for feeding the flow when measuring by PIV (Particle Image Velocimetry) method. The aim of the paper is to provide comprehensible instruction for choosing the proper type of seeding particles with regard to the flow characteristics and required measurement accuracy. The paper presents two methods with the help of which it is possible to determine the seeding particles' ability to follow the flow field. The first method is based on the direct calculation of the phase lag and amplitude ratio between the particle and the fluid. The calculation is based on solution of the BBO (Basset Boussinesq Oseen) equation for spherical particle. The other method results from the calculation of the particle time response, which defines the maximum frequency of disturbances, which are to be followed by the particle. In the conclusion, the method of choosing the seeding particles is proposed, depending on the required measurement accuracy.展开更多
In this paper the results of an experimental investigation, finalized to analyze the effect of roughness elements on the Oscillatory Boundary Layer (OBL), were presented and discussed. These experiments can be usefu...In this paper the results of an experimental investigation, finalized to analyze the effect of roughness elements on the Oscillatory Boundary Layer (OBL), were presented and discussed. These experiments can be useful for the characterization of the complex hydrodynamic mechanisms in coastal environment, where the bottom boundary layer is very often subject to momentum exchange processes due to the presence of macro-structures on the bottom able to strongly influence and modify its own structure. In this investigation, experiments were performed in an oscillating water tunnel, covering a range of frequencies to from 0.646 up to 2.319 rad.s^-1. The roughness elements were modelled by mean of a matrix of stiff cylinders arranged on the bottom of the tunnel and two densities of cylinders were considered, corresponding to low and high density respectively. Velocity measurements were obtained by 2C DPIV (2 Component Digital Particle Image Velocimetry) technique. A detailed visualization of the flow through adjacent cylinders, including scalar velocity maps and streamlines are presented. Furthermore phase-averaged velocity distributions are here provided. Moreover, root-mean-squared velocities are considered and an empirical relation between (1) the root-mean-squared velocities and the distance from the bottom; (2) the velocity attenuation coefficient and the Reynolds number is obtained for both the considered configurations.展开更多
In this work, the wing tip vortex structure behind a NACA 0015 airfoil with and without small flaps was studied using a Partical Image Velocimetry (PIV) system. The experiment was carried out in a low speed wind tun...In this work, the wing tip vortex structure behind a NACA 0015 airfoil with and without small flaps was studied using a Partical Image Velocimetry (PIV) system. The experiment was carried out in a low speed wind tunnel with a test section of 0.5 m x 0.5 m. The Reynolds number (Re), defined by the chord length of the wing (C), was 8.1 x 104. The angle of attack was fixed at 10~. The PIV measurements were made from 0 to 2C, measured from the trailing edge of the model. The dihedral angle of three flaps was -15~, 0~ and 15~, respectively. Compared with the clean airfoil, the one with three flaps significantly changed the wing tip vortex structure, the vorticity and the core of the wing tip vortex. The occurrence of three flaps decreased the gradient of pressure on the two sides of the wing tip, which depressed wing tip vortex formation to some extent. Vortices shed from three flaps influence the evolution of the wingtip vortex generated by the base airfoil. The interaction of those vortices resulted in a weakening of the wing tip vortex.展开更多
文摘利用粒子图像测速仪(Particle imaging velocimetry,PIV)测量斜切径向旋流器模型燃烧室内油雾特性,试验研究不同进气温度、流量和油气比对燃烧室内油珠颗粒大小及其分布的影响。试验结果表明:模型燃烧室内不同区域的油珠数密度明显不同,但油珠粒径分布基本相同;进气温度升高和油气比增大,使得燃烧室中油雾的索太尔平均直径(Sauter mean diameter,SMD)减小,燃油雾化得到改善;而进气流量的变化对燃烧室中油雾的SMD影响不大。
文摘In this paper, particle image velocimetry (PIV) was used to measure the mean and root meansquare(RMS) velocity in the stirred tank with six-flat blade Rushton turbine and with no baffles. Two typesof motion patterns were studied. One was that the impeller runs at constant speed, the other was that the impellerruns at time-dependent speed and in a periodic way. The emphasis of the paper was on the comparison of meanand RMS velocity vector maps and profiles between these two types of motion patterns, and especial attention waspaid to the comparison of the mean velocity, time-averaged RMS velocity, phase averaged RMS velocity betweenthe constant 3 RPS (revolution per second) and time-dependent operation. The Reynolds number was between 763and 1527. The study explained the mechanism that time-dependent RPS is more efficient for mixing than that ofconstant RPS.
基金Project(104244) supported by the Natural Sciences and Engineering Research Council of Canada
文摘A developed stereo particle image velocimetry(stereo-PIV) system was proposed to measure three-dimensional(3D) soil deformation around a laterally loaded pile in sand.The stereo-PIV technique extended 2D measurement to 3D based on a binocular vision model,where two cameras with a well geometrical setting were utilized to image the same object simultaneously.This system utilized two open software packages and some simple programs in MATLAB,which can easily be adjusted to meet user needs at a low cost.The failure planes form an angle with the horizontal line,which are measured at 27°-29°,approximately three-fourths of the frictional angle of soil.The edge of the strain wedge formed in front of the pile is an arc,which is slightly different from the straight line reported in the literature.The active and passive influence zones are about twice and six times of the diameter of the pile,respectively.The test demonstrates the good performance and feasibility of this stereo-PIV system for more advanced geotechnical testing.
基金Foundation item: Supported by the National Natural Science Foundation of China (Grant Nos. 41176074, 51379043 and 51409063)Acknowledgement This project was supported by the National Natural Science Foundation of China (Grant Nos. 41176074,51379043 and 51409063) and was conducted in response to the great support received from a basic research project entitled "Multihull Ship Technology Key Laboratory of Fundamental Science for National Defence", which was conducted at Harbin Engineering University. The authors would like to extend their sincere gratitude to their colleagues in the towing tank laboratory.
文摘Experimental tests were conducted to evaluate the hydrodynamic performance of an L-type podded propulsor in straight-ahead motion and off-design conditions using an open-water measuring instrument developed by the authors for podded propulsors, a ship model towing tank, and under water particle image velocimetry (PIV) measurement systems. Under the three types of conditions, the main parameters of an L-type podded propulsor were measured, including the propeller thrust and torque, as well as the thrust, side force, and moment of the whole pod unit.In addition, the flow field on the section between the propeller and the strut was analyzed. Experimental results demonstrate that the dynamic azimuthing rate and direction and the turning direction affect the forces on the propeller and the whole pod unit. Forces are asymmetrically distributed between the left and right azimuthing directions because of the effect of propeller rotation. The findings of this study provide a foundation for further research on L-type podded propulsors.
文摘This paper is focused on the problem of the ability of seeding particles to follow the flow field. One of the most important factors influencing the resultant accuracy of the measurement is using the proper seeding particles for feeding the flow when measuring by PIV (Particle Image Velocimetry) method. The aim of the paper is to provide comprehensible instruction for choosing the proper type of seeding particles with regard to the flow characteristics and required measurement accuracy. The paper presents two methods with the help of which it is possible to determine the seeding particles' ability to follow the flow field. The first method is based on the direct calculation of the phase lag and amplitude ratio between the particle and the fluid. The calculation is based on solution of the BBO (Basset Boussinesq Oseen) equation for spherical particle. The other method results from the calculation of the particle time response, which defines the maximum frequency of disturbances, which are to be followed by the particle. In the conclusion, the method of choosing the seeding particles is proposed, depending on the required measurement accuracy.
文摘In this paper the results of an experimental investigation, finalized to analyze the effect of roughness elements on the Oscillatory Boundary Layer (OBL), were presented and discussed. These experiments can be useful for the characterization of the complex hydrodynamic mechanisms in coastal environment, where the bottom boundary layer is very often subject to momentum exchange processes due to the presence of macro-structures on the bottom able to strongly influence and modify its own structure. In this investigation, experiments were performed in an oscillating water tunnel, covering a range of frequencies to from 0.646 up to 2.319 rad.s^-1. The roughness elements were modelled by mean of a matrix of stiff cylinders arranged on the bottom of the tunnel and two densities of cylinders were considered, corresponding to low and high density respectively. Velocity measurements were obtained by 2C DPIV (2 Component Digital Particle Image Velocimetry) technique. A detailed visualization of the flow through adjacent cylinders, including scalar velocity maps and streamlines are presented. Furthermore phase-averaged velocity distributions are here provided. Moreover, root-mean-squared velocities are considered and an empirical relation between (1) the root-mean-squared velocities and the distance from the bottom; (2) the velocity attenuation coefficient and the Reynolds number is obtained for both the considered configurations.
基金supported by the National Natural Science Foundation of China(Grant No. 10642002)
文摘In this work, the wing tip vortex structure behind a NACA 0015 airfoil with and without small flaps was studied using a Partical Image Velocimetry (PIV) system. The experiment was carried out in a low speed wind tunnel with a test section of 0.5 m x 0.5 m. The Reynolds number (Re), defined by the chord length of the wing (C), was 8.1 x 104. The angle of attack was fixed at 10~. The PIV measurements were made from 0 to 2C, measured from the trailing edge of the model. The dihedral angle of three flaps was -15~, 0~ and 15~, respectively. Compared with the clean airfoil, the one with three flaps significantly changed the wing tip vortex structure, the vorticity and the core of the wing tip vortex. The occurrence of three flaps decreased the gradient of pressure on the two sides of the wing tip, which depressed wing tip vortex formation to some extent. Vortices shed from three flaps influence the evolution of the wingtip vortex generated by the base airfoil. The interaction of those vortices resulted in a weakening of the wing tip vortex.