Aiming at the real-time fluctuation and nonlinear characteristics of the expressway short-term traffic flow forecasting the parameter projection pursuit regression PPPR model is applied to forecast the expressway traf...Aiming at the real-time fluctuation and nonlinear characteristics of the expressway short-term traffic flow forecasting the parameter projection pursuit regression PPPR model is applied to forecast the expressway traffic flow where the orthogonal Hermite polynomial is used to fit the ridge functions and the least square method is employed to determine the polynomial weight coefficient c.In order to efficiently optimize the projection direction a and the number M of ridge functions of the PPPR model the chaos cloud particle swarm optimization CCPSO algorithm is applied to optimize the parameters. The CCPSO-PPPR hybrid optimization model for expressway short-term traffic flow forecasting is established in which the CCPSO algorithm is used to optimize the optimal projection direction a in the inner layer while the number M of ridge functions is optimized in the outer layer.Traffic volume weather factors and travel date of the previous several time intervals of the road section are taken as the input influencing factors. Example forecasting and model comparison results indicate that the proposed model can obtain a better forecasting effect and its absolute error is controlled within [-6,6] which can meet the application requirements of expressway traffic flow forecasting.展开更多
In order to better identify the parameters of the fractional-order system,a modified particle swarm optimization(MPSO)algorithm based on an improved Tent mapping is proposed.The MPSO algorithm is validated with eight ...In order to better identify the parameters of the fractional-order system,a modified particle swarm optimization(MPSO)algorithm based on an improved Tent mapping is proposed.The MPSO algorithm is validated with eight classical test functions,and compared with the POS algorithm with adaptive time varying accelerators(ACPSO),the genetic algorithm(GA),a d the improved PSO algorithm with passive congregation(IPSO).Based on the systems with known model structures a d unknown model structures,the proposed algorithm is adopted to identify two typical fractional-order models.The results of parameter identification show that the application of average value of position information is beneficial to making f 11 use of the information exchange among individuals and speeds up the global searching speed.By introducing the uniformity and ergodicity of Tent mapping,the MPSO avoids the extreme v^ue of position information,so as not to fall into the local optimal value.In brief the MPSOalgorithm is an effective a d useful method with a fast convergence rate and high accuracy.展开更多
A new method integrating support vector machine (SVM),particle swarm optimization (PSO) and chaotic mapping (CPSO-SVM) was proposed to predict the deformation of tunnel surrounding rock mass.Since chaotic mapping was ...A new method integrating support vector machine (SVM),particle swarm optimization (PSO) and chaotic mapping (CPSO-SVM) was proposed to predict the deformation of tunnel surrounding rock mass.Since chaotic mapping was featured by certainty,ergodicity and stochastic property,it was employed to improve the convergence rate and resulting precision of PSO.The chaotic PSO was adopted in the optimization of the appropriate SVM parameters,such as kernel function and training parameters,improving substantially the generalization ability of SVM.And finally,the integrating method was applied to predict the convergence deformation of the Xiakeng tunnel in China.The results indicate that the proposed method can describe the relationship of deformation time series well and is proved to be more efficient.展开更多
In order to diagnose the common faults of railway switch control circuit,a fault diagnosis method based on density-based spatial clustering of applications with noise(DBSCAN)and self-organizing feature map(SOM)is prop...In order to diagnose the common faults of railway switch control circuit,a fault diagnosis method based on density-based spatial clustering of applications with noise(DBSCAN)and self-organizing feature map(SOM)is proposed.Firstly,the three-phase current curve of the switch machine recorded by the micro-computer monitoring system is dealt with segmentally and then the feature parameters of the three-phase current are calculated according to the action principle of the switch machine.Due to the high dimension of initial features,the DBSCAN algorithm is used to separate the sensitive features of fault diagnosis and construct the diagnostic sensitive feature set.Then,the particle swarm optimization(PSO)algorithm is used to adjust the weight of SOM network to modify the rules to avoid“dead neurons”.Finally,the PSO-SOM network fault classifier is designed to complete the classification and diagnosis of the samples to be tested.The experimental results show that this method can judge the fault mode of switch control circuit with less training samples,and the accuracy of fault diagnosis is higher than that of traditional SOM network.展开更多
基金The National Natural Science Foundation of China(No.71101014,50679008)Specialized Research Fund for the Doctoral Program of Higher Education(No.200801411105)the Science and Technology Project of the Department of Communications of Henan Province(No.2010D107-4)
文摘Aiming at the real-time fluctuation and nonlinear characteristics of the expressway short-term traffic flow forecasting the parameter projection pursuit regression PPPR model is applied to forecast the expressway traffic flow where the orthogonal Hermite polynomial is used to fit the ridge functions and the least square method is employed to determine the polynomial weight coefficient c.In order to efficiently optimize the projection direction a and the number M of ridge functions of the PPPR model the chaos cloud particle swarm optimization CCPSO algorithm is applied to optimize the parameters. The CCPSO-PPPR hybrid optimization model for expressway short-term traffic flow forecasting is established in which the CCPSO algorithm is used to optimize the optimal projection direction a in the inner layer while the number M of ridge functions is optimized in the outer layer.Traffic volume weather factors and travel date of the previous several time intervals of the road section are taken as the input influencing factors. Example forecasting and model comparison results indicate that the proposed model can obtain a better forecasting effect and its absolute error is controlled within [-6,6] which can meet the application requirements of expressway traffic flow forecasting.
基金The National Natural Science Foundation of China(No.61374153,61473138,61374133)the Natural Science Foundation of Jiangsu Province(No.BK20151130)+1 种基金Six Talent Peaks Project in Jiangsu Province(No.2015-DZXX-011)China Scholarship Council Fund(No.201606845005)
文摘In order to better identify the parameters of the fractional-order system,a modified particle swarm optimization(MPSO)algorithm based on an improved Tent mapping is proposed.The MPSO algorithm is validated with eight classical test functions,and compared with the POS algorithm with adaptive time varying accelerators(ACPSO),the genetic algorithm(GA),a d the improved PSO algorithm with passive congregation(IPSO).Based on the systems with known model structures a d unknown model structures,the proposed algorithm is adopted to identify two typical fractional-order models.The results of parameter identification show that the application of average value of position information is beneficial to making f 11 use of the information exchange among individuals and speeds up the global searching speed.By introducing the uniformity and ergodicity of Tent mapping,the MPSO avoids the extreme v^ue of position information,so as not to fall into the local optimal value.In brief the MPSOalgorithm is an effective a d useful method with a fast convergence rate and high accuracy.
基金Project(NCET-08-0662)supported by Program for New Century Excellent Talents in University of ChinaProject(2010CB732006)supported by the Special Funds for the National Basic Research Program of ChinaProjects(51178187,41072224)supported by the National Natural Science Foundation of China
文摘A new method integrating support vector machine (SVM),particle swarm optimization (PSO) and chaotic mapping (CPSO-SVM) was proposed to predict the deformation of tunnel surrounding rock mass.Since chaotic mapping was featured by certainty,ergodicity and stochastic property,it was employed to improve the convergence rate and resulting precision of PSO.The chaotic PSO was adopted in the optimization of the appropriate SVM parameters,such as kernel function and training parameters,improving substantially the generalization ability of SVM.And finally,the integrating method was applied to predict the convergence deformation of the Xiakeng tunnel in China.The results indicate that the proposed method can describe the relationship of deformation time series well and is proved to be more efficient.
基金High Education Research Project Funding(No.2018C-11)Natural Science Fund of Gansu Province(Nos.18JR3RA107,1610RJYA034)Key Research and Development Program of Gansu Province(No.17YF1WA 158)。
文摘In order to diagnose the common faults of railway switch control circuit,a fault diagnosis method based on density-based spatial clustering of applications with noise(DBSCAN)and self-organizing feature map(SOM)is proposed.Firstly,the three-phase current curve of the switch machine recorded by the micro-computer monitoring system is dealt with segmentally and then the feature parameters of the three-phase current are calculated according to the action principle of the switch machine.Due to the high dimension of initial features,the DBSCAN algorithm is used to separate the sensitive features of fault diagnosis and construct the diagnostic sensitive feature set.Then,the particle swarm optimization(PSO)algorithm is used to adjust the weight of SOM network to modify the rules to avoid“dead neurons”.Finally,the PSO-SOM network fault classifier is designed to complete the classification and diagnosis of the samples to be tested.The experimental results show that this method can judge the fault mode of switch control circuit with less training samples,and the accuracy of fault diagnosis is higher than that of traditional SOM network.