根据有限集统计方法,推导得到了可适用于不可分辨目标跟踪问题的势概率假设密度(cardinalized probability hypothesis density,CPHD)滤波器。类似传统的点目标CPHD滤波器,该不可分辨目标CPHD滤波器不仅可以递推地传递多目标状态集合的...根据有限集统计方法,推导得到了可适用于不可分辨目标跟踪问题的势概率假设密度(cardinalized probability hypothesis density,CPHD)滤波器。类似传统的点目标CPHD滤波器,该不可分辨目标CPHD滤波器不仅可以递推地传递多目标状态集合的一阶统计矩,还可以传递多目标个数(即势)的概率分布。蒙特卡罗仿真实验表明,相比Mahler提出的不可分辨目标PHD滤波器,所提出的不可分辨目标CPHD滤波器具有更加精确和稳定的多目标个数和状态估计,但它的计算量要大于不可分辨目标PHD滤波器。展开更多
针对现有的多机动目标追踪问题,将交互式多模型(interacting multiple model,IMM)思想与箱粒子概率假设密度滤波器(box probability hypothesis density filter,Box-PHD)相结合,并针对箱粒子在区间密集杂波等复杂环境下箱体偏大,所导致...针对现有的多机动目标追踪问题,将交互式多模型(interacting multiple model,IMM)思想与箱粒子概率假设密度滤波器(box probability hypothesis density filter,Box-PHD)相结合,并针对箱粒子在区间密集杂波等复杂环境下箱体偏大,所导致的箱粒子冗余和目标跟踪位置估计不精确等问题,引入箱粒子划分技术,提出一种划分交互式概率假设密度滤波(partitioned interacting multiple model probability hypothesis density filter,PIMM-Box-PHD)算法,来处理椭圆形多机动目标的跟踪问题。该算法首先在预测阶段针对多目标的机动问题引入IMM预测,利用多模型交互方法来解决目标运动时模型失配问题;其次,利用箱划分技术将预测得到的箱粒子划分为大小和权值相同的多个子箱,以提高目标位置估计精度;最后,利用Box-PHD滤波对划分后的小箱粒子集进行区间量测更新。利用实验验证了PIMM-Box-PHD算法在多机动目标跟踪方面的良好性能,以及相较于IMM-Box-PHD算法在目标位置估计方面的优势。展开更多
基于概率假设密度滤波(Probability Hypothesis Density,PHD)的检测前跟踪(Track before detect,TBD)技术可以有效解决未知目标数的弱小点目标检测前跟踪问题.文章针对现有PHD-TBD算法存在目标数估计不准、目标发现延时较久的问题进行研...基于概率假设密度滤波(Probability Hypothesis Density,PHD)的检测前跟踪(Track before detect,TBD)技术可以有效解决未知目标数的弱小点目标检测前跟踪问题.文章针对现有PHD-TBD算法存在目标数估计不准、目标发现延时较久的问题进行研究.从标准PHD滤波出发,更为合理地推导出PHD-TBD算法的粒子权重更新计算表达式,实现对目标数的准确估计;同时利用贝叶斯滤波理论,推导出基于量测的新生粒子概率密度采样函数,完成对目标的快速发现.仿真实验表明,与现有的PHD-TBD相比,改进算法能够适应目标扩散情况,准确估计目标数目,并实现对目标的快速发现和位置准确估计.展开更多
文摘根据有限集统计方法,推导得到了可适用于不可分辨目标跟踪问题的势概率假设密度(cardinalized probability hypothesis density,CPHD)滤波器。类似传统的点目标CPHD滤波器,该不可分辨目标CPHD滤波器不仅可以递推地传递多目标状态集合的一阶统计矩,还可以传递多目标个数(即势)的概率分布。蒙特卡罗仿真实验表明,相比Mahler提出的不可分辨目标PHD滤波器,所提出的不可分辨目标CPHD滤波器具有更加精确和稳定的多目标个数和状态估计,但它的计算量要大于不可分辨目标PHD滤波器。
文摘针对现有的多机动目标追踪问题,将交互式多模型(interacting multiple model,IMM)思想与箱粒子概率假设密度滤波器(box probability hypothesis density filter,Box-PHD)相结合,并针对箱粒子在区间密集杂波等复杂环境下箱体偏大,所导致的箱粒子冗余和目标跟踪位置估计不精确等问题,引入箱粒子划分技术,提出一种划分交互式概率假设密度滤波(partitioned interacting multiple model probability hypothesis density filter,PIMM-Box-PHD)算法,来处理椭圆形多机动目标的跟踪问题。该算法首先在预测阶段针对多目标的机动问题引入IMM预测,利用多模型交互方法来解决目标运动时模型失配问题;其次,利用箱划分技术将预测得到的箱粒子划分为大小和权值相同的多个子箱,以提高目标位置估计精度;最后,利用Box-PHD滤波对划分后的小箱粒子集进行区间量测更新。利用实验验证了PIMM-Box-PHD算法在多机动目标跟踪方面的良好性能,以及相较于IMM-Box-PHD算法在目标位置估计方面的优势。
文摘基于概率假设密度滤波(Probability Hypothesis Density,PHD)的检测前跟踪(Track before detect,TBD)技术可以有效解决未知目标数的弱小点目标检测前跟踪问题.文章针对现有PHD-TBD算法存在目标数估计不准、目标发现延时较久的问题进行研究.从标准PHD滤波出发,更为合理地推导出PHD-TBD算法的粒子权重更新计算表达式,实现对目标数的准确估计;同时利用贝叶斯滤波理论,推导出基于量测的新生粒子概率密度采样函数,完成对目标的快速发现.仿真实验表明,与现有的PHD-TBD相比,改进算法能够适应目标扩散情况,准确估计目标数目,并实现对目标的快速发现和位置准确估计.