The aggregating behavior between bubbles and particles induced by high intensity conditioning (HIC) was studied using high speed CCD technique. Bubble size measurement was conducted, and the attachment behavior betwee...The aggregating behavior between bubbles and particles induced by high intensity conditioning (HIC) was studied using high speed CCD technique. Bubble size measurement was conducted, and the attachment behavior between bubbles and particles in HIC cell and flotation cell were observed. The results show that in HIC cell, high intensity conditioning creates an advantage environment for the formation of small size bubble due to hydrodynamic cavitations, and these fine bubbles have high probability of bubble-particle collision, which will enhance fine particle flotation. The bubble-particle attachment experiments indicate that in high intensity conditioning cell, a lot of fine bubbles are produced in situ on the surface of fine particles, and most of fine particles are aggregated under the bridging action of fine bubbles. The observation of bubble-particle interaction in flotation cell illustrates that aggregates created by HIC can be loaded more easily by big air bubble in flotation cell than those created by normal conditioning.展开更多
An ordered nanostructure formed by epitaxial crystallization of a semicrystalline block copolymer on a substrate has been used as a patterned template for the selective deposition of thermally evaporated gold nanopart...An ordered nanostructure formed by epitaxial crystallization of a semicrystalline block copolymer on a substrate has been used as a patterned template for the selective deposition of thermally evaporated gold nanoparticles, resulting in the formation of structure-guiding host nanocomposites in which the ordered distribution of the guest particles is guided by the ordering of the host nanostructured block copolymer matrix. This opens new perspectives in the field of polymeric composites related to the maximum enhancement of effective physical properties and to the numerous possible applications that arise due to the presence of long-range order in the spatial distribution of functional nanoparticles.展开更多
基金Project(50234010) supported by the National Natural Science Key Foundation of China Project (50304013) supported by the National Natural Science Foundation of China
文摘The aggregating behavior between bubbles and particles induced by high intensity conditioning (HIC) was studied using high speed CCD technique. Bubble size measurement was conducted, and the attachment behavior between bubbles and particles in HIC cell and flotation cell were observed. The results show that in HIC cell, high intensity conditioning creates an advantage environment for the formation of small size bubble due to hydrodynamic cavitations, and these fine bubbles have high probability of bubble-particle collision, which will enhance fine particle flotation. The bubble-particle attachment experiments indicate that in high intensity conditioning cell, a lot of fine bubbles are produced in situ on the surface of fine particles, and most of fine particles are aggregated under the bridging action of fine bubbles. The observation of bubble-particle interaction in flotation cell illustrates that aggregates created by HIC can be loaded more easily by big air bubble in flotation cell than those created by normal conditioning.
文摘An ordered nanostructure formed by epitaxial crystallization of a semicrystalline block copolymer on a substrate has been used as a patterned template for the selective deposition of thermally evaporated gold nanoparticles, resulting in the formation of structure-guiding host nanocomposites in which the ordered distribution of the guest particles is guided by the ordering of the host nanostructured block copolymer matrix. This opens new perspectives in the field of polymeric composites related to the maximum enhancement of effective physical properties and to the numerous possible applications that arise due to the presence of long-range order in the spatial distribution of functional nanoparticles.