In this paper, a novel clutter suppression method in Ground Penetrating Radar (GPR) is proposed. Time segments of hill are represented by their corresponding particle in B-scan. Those particles in B-scan are clustered...In this paper, a novel clutter suppression method in Ground Penetrating Radar (GPR) is proposed. Time segments of hill are represented by their corresponding particle in B-scan. Those particles in B-scan are clustered to represent reflectors (such as buried targets, air-soil interface). The clusters of buried target have a particle sequence with single peak. Therefore, if the particles donot belong to the cluster of buried target, time segment they represent will be suppressed. Experimental results and simulation are provided to demonstrate that the new algorithm outperforms existing approaches.展开更多
The train schedule usually includes train stop schedule,routing scheme and formation scheme.It is the basis of subway transportation.Combining the practical experience of transport organizations and the principle of t...The train schedule usually includes train stop schedule,routing scheme and formation scheme.It is the basis of subway transportation.Combining the practical experience of transport organizations and the principle of the best match between transport capacity and passenger flow demand,taking the minimum value of passenger travel costs and corporation operating costs as the goal,considering the constraints of the maximum rail capacity,the minimum departure frequency and the maximum available electric multiple unit,an optimization model for city subway Y-type operation mode is constructed to determine the operation section of mainline as well as branch line and the train frequency of the Y-type operation mode.The particle swarm optimization(PSO)algorithm based on classification learning is used to solve the model,and the effectiveness of the model and algorithm is verified by a practical case.The results show that the length of branch line in Y-type operation affects the cost of waiting time of passengers significantly.展开更多
As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algori...As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algorithm is used to extract target states,a free clustering optimal P-PHD(FCO-P-PHD) filter is proposed.This method can lead to obtainment of analytical form of optimal sampling density of P-PHD filter and realization of optimal P-PHD filter without use of clustering algorithms in extraction target states.Besides,as sate extraction method in FCO-P-PHD filter is coupled with the process of obtaining analytical form for optimal sampling density,through decoupling process,a new single-sensor free clustering state extraction method is proposed.By combining this method with standard P-PHD filter,FC-P-PHD filter can be obtained,which significantly improves the tracking performance of P-PHD filter.In the end,the effectiveness of proposed algorithms and their advantages over other algorithms are validated through several simulation experiments.展开更多
基金Supported by the National Natural Science Foundation of China (No.60501018)
文摘In this paper, a novel clutter suppression method in Ground Penetrating Radar (GPR) is proposed. Time segments of hill are represented by their corresponding particle in B-scan. Those particles in B-scan are clustered to represent reflectors (such as buried targets, air-soil interface). The clusters of buried target have a particle sequence with single peak. Therefore, if the particles donot belong to the cluster of buried target, time segment they represent will be suppressed. Experimental results and simulation are provided to demonstrate that the new algorithm outperforms existing approaches.
文摘The train schedule usually includes train stop schedule,routing scheme and formation scheme.It is the basis of subway transportation.Combining the practical experience of transport organizations and the principle of the best match between transport capacity and passenger flow demand,taking the minimum value of passenger travel costs and corporation operating costs as the goal,considering the constraints of the maximum rail capacity,the minimum departure frequency and the maximum available electric multiple unit,an optimization model for city subway Y-type operation mode is constructed to determine the operation section of mainline as well as branch line and the train frequency of the Y-type operation mode.The particle swarm optimization(PSO)algorithm based on classification learning is used to solve the model,and the effectiveness of the model and algorithm is verified by a practical case.The results show that the length of branch line in Y-type operation affects the cost of waiting time of passengers significantly.
文摘As to the fact that it is difficult to obtain analytical form of optimal sampling density and tracking performance of standard particle probability hypothesis density(P-PHD) filter would decline when clustering algorithm is used to extract target states,a free clustering optimal P-PHD(FCO-P-PHD) filter is proposed.This method can lead to obtainment of analytical form of optimal sampling density of P-PHD filter and realization of optimal P-PHD filter without use of clustering algorithms in extraction target states.Besides,as sate extraction method in FCO-P-PHD filter is coupled with the process of obtaining analytical form for optimal sampling density,through decoupling process,a new single-sensor free clustering state extraction method is proposed.By combining this method with standard P-PHD filter,FC-P-PHD filter can be obtained,which significantly improves the tracking performance of P-PHD filter.In the end,the effectiveness of proposed algorithms and their advantages over other algorithms are validated through several simulation experiments.