期刊文献+
共找到12,691篇文章
< 1 2 250 >
每页显示 20 50 100
基于协同进化粒子群优化算法的水资源配置模型及应用
1
作者 刘洪波 菅浩然 《人民黄河》 CAS 北大核心 2024年第11期74-79,共6页
面向新发展阶段的城市水资源配置具有多目标、多变量、约束条件复杂、求解结果非线性、求解过程困难等特征。针对线性规划、动态规划、非线性规划等传统优化算法在解决水资源配置问题中求解结果不合理、计算效率低,求解多目标问题收敛... 面向新发展阶段的城市水资源配置具有多目标、多变量、约束条件复杂、求解结果非线性、求解过程困难等特征。针对线性规划、动态规划、非线性规划等传统优化算法在解决水资源配置问题中求解结果不合理、计算效率低,求解多目标问题收敛慢等问题,提出了基于协同进化粒子群优化(CPSO)算法的多目标水资源优化配置模型。以郑州市为例,构建了以实现社会、经济和生态效益的最大化为目标,供水量、需水量、供水能力和水库库容为约束的水资源配置模型。通过输入郑州市各计算单元和用水部门的用水需求量和可用水量,该模型计算并输出郑州市9个区在2019年、2035年的缺水率。结果表明:郑州市供水的区域分布比较均衡,缺水率在可接受范围内;该模型算法进化速度较快,进化的稳定性较优,优化结果在种群中可以很好地保留且对进化方向的主导性很强,可以有效地应用于解决水资源配置问题,并提升模型计算效率,为水资源管理部门提供技术支持。 展开更多
关键词 协同进化 粒子优化算法 水资源优化配置 郑州市
下载PDF
基于差分进化粒子群混合算法的多无人机协同区域搜索策略 被引量:2
2
作者 赖幸君 唐鑫 +2 位作者 林磊 王志胜 丛玉华 《弹箭与制导学报》 北大核心 2024年第1期89-97,共9页
为提高无人机群在未知环境中的区域搜索效率,提出一种多无人机协同区域搜索策略。首先,根据区域搜索任务需求,建立包含区域覆盖率、区域不确定度、目标存在概率三种属性的区域信息地图;其次,以最大化搜索效率、同时最小化无人机搜索过... 为提高无人机群在未知环境中的区域搜索效率,提出一种多无人机协同区域搜索策略。首先,根据区域搜索任务需求,建立包含区域覆盖率、区域不确定度、目标存在概率三种属性的区域信息地图;其次,以最大化搜索效率、同时最小化无人机搜索过程中的能耗为目标,建立无人机区域搜索滚动时域优化目标函数,指导无人机在线决策搜索路线;然后针对传统群智能优化算法易陷入局部最优的缺陷,设计差分进化粒子群混合算法在线求解该多目标优化问题,提高算法的寻优性能,从而提高无人机的搜索效率。最后,通过数值仿真实验,对所提算法进行验证,仿真结果表明,文中设计的基于差分进化粒子群混合算法的多无人机协同区域搜索策略与传统的群智能优化算法相比具有更高的区域搜索效率。 展开更多
关键词 多无人机 协同搜索 智能算法 滚动时域优化 差分进化粒子混合算法
下载PDF
一种基于粒子群优化算法和差分进化算法的新型混合全局优化算法 被引量:70
3
作者 栾丽君 谭立静 牛奔 《信息与控制》 CSCD 北大核心 2007年第6期708-714,共7页
提出一种基于粒子群算法(PSO)和差分进化算法(DE)相结合的新型混合全局优化算法——PSODE.该算法基于一种双种群进化策略,一个种群中的个体由粒子群算法进化而来,另一种群的个体由差分操作进化而来.此外,通过采用一种信息分享机制,在算... 提出一种基于粒子群算法(PSO)和差分进化算法(DE)相结合的新型混合全局优化算法——PSODE.该算法基于一种双种群进化策略,一个种群中的个体由粒子群算法进化而来,另一种群的个体由差分操作进化而来.此外,通过采用一种信息分享机制,在算法执行过程中两个种群中的个体可以实现协同进化.为了进一步提高PSODE算法的性能,摆脱陷入局部最优点,还采用了一种变异机制.通过4个标准测试函数的测试并与PSO和DE算法进行比较,证明本文提出的PSODE算法是一种收敛速度快、求解精度高、鲁棒性较强的全局优化算法. 展开更多
关键词 粒子优化算法 差分进化算法 混合算法 基准测试函数
下载PDF
一种多种群进化和差分变异的鲸鱼优化算法
4
作者 朱杰 付伟 +3 位作者 马宁 季伟东 苏婷 陈珊 《小型微型计算机系统》 CSCD 北大核心 2024年第11期2618-2627,共10页
针对鲸鱼优化算法容易陷入局部最优,求解精度低,收敛速度慢,提出了一种多种群进化和差分变异的鲸鱼优化算法(MDWOA).首先,根据适应度值将种群划分为两个大小相等的子种群,并为每个子种群分配不同的移动策略,以平衡全局和局部搜索能力.其... 针对鲸鱼优化算法容易陷入局部最优,求解精度低,收敛速度慢,提出了一种多种群进化和差分变异的鲸鱼优化算法(MDWOA).首先,根据适应度值将种群划分为两个大小相等的子种群,并为每个子种群分配不同的移动策略,以平衡全局和局部搜索能力.其次,设计了一种种群进化和差分变异的策略来帮助MDWOA提高收敛速度,避免其陷入局部最优.最后,引入反向学习策略,增加种群多样性.将MDWOA与多种优化算法在13个基准函数上进行仿真测试,非参数检验的结果表明相较于其他优化算法来说改进的算法具有更高的精度和稳定性.在此基础上,建立了基于MDWOA优化BP神经网络模型,预测波士顿房价的实验结果表明所提出的预测模型具有更好的预测性能和有效性. 展开更多
关键词 多种进化 差分变异 鲸鱼优化算法 反向学习 MDWOA-BP神经网络
下载PDF
基于差分进化和粒子群优化算法的混合优化算法 被引量:26
5
作者 池元成 方杰 蔡国飙 《计算机工程与设计》 CSCD 北大核心 2009年第12期2963-2965,2980,共4页
为了发挥差分进化和粒子群优化算法各自拥有的特点,并克服自身存在的问题,提出了一种混合优化算法(简称DPA)。该算法首先利用差分进化的变异和选择算子产生新的群体,然后通过使用粒子群优化算法和交叉、选择算子进行局部搜索。在整个算... 为了发挥差分进化和粒子群优化算法各自拥有的特点,并克服自身存在的问题,提出了一种混合优化算法(简称DPA)。该算法首先利用差分进化的变异和选择算子产生新的群体,然后通过使用粒子群优化算法和交叉、选择算子进行局部搜索。在整个算法过程中,群体寻优范围先扩散再收缩,反复迭代渐进收敛。通过3个标准算例的测试表明,新的混合优化算法与差分进化和粒子群优化算法相比,具有收敛速度快、搜索能力强、鲁棒性好的特点。 展开更多
关键词 差分进化 粒子优化算法 混合算法 优化 基准测试函数
下载PDF
基于差分进化粒子群算法的多目标无功优化 被引量:12
6
作者 简献忠 李莹 +2 位作者 范建鹏 柏勰文 杨延安 《控制工程》 CSCD 北大核心 2015年第1期113-117,共5页
针对电力系统有功网损最小、电压水平最好和电压稳定裕度最大的多目标无功优化问题,提出一种基于差分进化的改进多目标粒子群优化算法。该算法通过对Pareto最优解集的差分进化来增加Pareto最优解的多样性,通过拥挤距离来控制精英集中非... 针对电力系统有功网损最小、电压水平最好和电压稳定裕度最大的多目标无功优化问题,提出一种基于差分进化的改进多目标粒子群优化算法。该算法通过对Pareto最优解集的差分进化来增加Pareto最优解的多样性,通过拥挤距离来控制精英集中非支配解的分布,以提高对种群空间的均匀采集;采用擂台赛法则构造多目标Pareto最优解集,较大程度的提高了算法的运行效率;自适应惯性权重和加速度因子的动态变化可增强算法的全局搜索能力。将该算法在IEEE14、IEEE30节点标准测试系统上进行了无功优化仿真,结果表明,基于差分进化的改进多目标粒子群优化算法能够在保持Pareto最优解的多样性的同时具有较好的收敛性能,为多目标无功优化提供了一种新的方法。 展开更多
关键词 无功优化 多目标 差分进化 粒子优化算法 非支配排序
下载PDF
差分进化粒子群混合优化算法的研究与应用 被引量:15
7
作者 杨妍 陈如清 俞金寿 《计算机工程与应用》 CSCD 北大核心 2010年第25期238-241,共4页
对基本粒子群算法(PSO)和差分进化算法(DE)进行了分析,有机结合两种进化算法提出了一种新型差分进化粒子群混合优化算法,该算法将优化过程分成两阶段,两分群分别采用PSO算法和DE算法同时进行。迭代过程中引入进化速度因子并通过群体间... 对基本粒子群算法(PSO)和差分进化算法(DE)进行了分析,有机结合两种进化算法提出了一种新型差分进化粒子群混合优化算法,该算法将优化过程分成两阶段,两分群分别采用PSO算法和DE算法同时进行。迭代过程中引入进化速度因子并通过群体间的信息交流阻止算法陷入局部最优。对4个高维复杂函数寻优测试表明算法的鲁棒性、收敛速度和精度,全局搜索能力均优于常规PSO和DE。将提出的改进算法用于乙烯收率软测量建模,应用结果表明模型精度较高、泛化性能较好。 展开更多
关键词 粒子优化 差分进化 混合优化算法 软测量
下载PDF
一种混沌差分进化和粒子群优化混合算法 被引量:22
8
作者 阳春华 钱晓山 桂卫华 《计算机应用研究》 CSCD 北大核心 2011年第2期439-441,共3页
为了改善差分进化粒子群算法的局部搜索能力和收敛速度,提出了一种混沌差分进化的粒子群优化算法。该算法利用信息交换机制将两组种群分别用差分进化算法和粒子群算法进行协同进化,并且将混沌变异操作引入其中,加强算法的局部搜索能力... 为了改善差分进化粒子群算法的局部搜索能力和收敛速度,提出了一种混沌差分进化的粒子群优化算法。该算法利用信息交换机制将两组种群分别用差分进化算法和粒子群算法进行协同进化,并且将混沌变异操作引入其中,加强算法的局部搜索能力。通过对三个标准函数进行测试,仿真结果表明该算法与DEPSO算法相比,全局搜索能力、抗早熟收敛性能及收敛速度大大提高。 展开更多
关键词 差分进化 粒子 混沌变异 局部搜索能力 收敛速度
下载PDF
融合差分进化和Sine混沌的改进粒子群算法 被引量:1
9
作者 马乐杰 邹德旋 +2 位作者 李灿 邵莹莹 杨志龙 《计算机工程与应用》 CSCD 北大核心 2024年第19期80-96,共17页
将差分进化与Sine混沌相结合,提出一种改进的粒子群算法。利用Sine混沌映射对初始种群进行优化,提高了收敛速度;该算法通过引入非同步变化的学习因子的速度更新公式,引入随机惯性权重,使算法能够更好地兼顾全局搜索与局部优化;借鉴差分... 将差分进化与Sine混沌相结合,提出一种改进的粒子群算法。利用Sine混沌映射对初始种群进行优化,提高了收敛速度;该算法通过引入非同步变化的学习因子的速度更新公式,引入随机惯性权重,使算法能够更好地兼顾全局搜索与局部优化;借鉴差分进化算法中的交叉操作,采用淘汰机制随机搜索策略,提高算法的全局搜索能力,提高算法收敛速度。为了验证融合差分进化和Sine混沌的改进粒子群算法(improved particle swarm optimization algorithm,IPSO)的性能,与基于压缩学习因子的粒子群算法(yield-based particle swarm optimization,YPSO)、自适应加权粒子群算法(self-adaptive particle swarm optimization,SPSO)等PSO相关算法以及蜘蛛蜂优化算法(spider wasp optimization,SWO)、能量谷算法(energy valley algorithm,EVA)等2023年最新算法相比较,验证融合差分进化和Sine混沌的改进粒子群算法(IPSO)的有效性。在不同维度下解决12个常用基准函数,对12个测试函数进行实验,并与其他的几种算法进行比较,实验结果表明,改进后的PSO算法收敛速度快,收敛精度高。 展开更多
关键词 粒子优化算法 Sine映射 差分进化算法 交叉操作 随机搜索策略
下载PDF
基于竞争式协同进化的混合变量粒子群优化算法
10
作者 张虎 张衡 +4 位作者 黄子路 王喆 付青坡 彭瑾 王峰 《系统仿真学报》 CAS CSCD 北大核心 2024年第4期844-858,共15页
现实工业生产应用中存在大量的混合变量优化问题,这类问题的决策变量既包含连续变量,又包含离散变量。由于决策变量为混合类型,导致问题的决策空间变得不规则,采用已有的方法很难进行有效求解。引入协同进化策略,提出一种基于竞争式协... 现实工业生产应用中存在大量的混合变量优化问题,这类问题的决策变量既包含连续变量,又包含离散变量。由于决策变量为混合类型,导致问题的决策空间变得不规则,采用已有的方法很难进行有效求解。引入协同进化策略,提出一种基于竞争式协同进化的混合变量粒子群优化算法(competitive coevolution based PSO,CCPSO)。设计基于容忍度的搜索方向调整机制来判断粒子的进化状态,从而自适应地调整粒子的搜索方向,避免陷入局部最优,平衡了种群的收敛性和多样性;引入基于竞争式协同进化的学习对象生成机制,在检测到粒子进化停滞时为每个粒子生成新的学习对象,从而推动粒子的进一步搜索,提高了种群的多样性;采用基于竞争学习的预测策略为粒子选择合适的学习对象,充分利用了新旧学习对象的学习潜力,保证了算法的收敛速度。实验结果表明:相比其他主流的混合变量优化算法,CCPSO可以获得更优的结果。 展开更多
关键词 混合变量优化 协同策略 进化算法 粒子
下载PDF
一种组合粒子群和差分进化的多目标优化算法 被引量:8
11
作者 陶新民 徐鹏 +1 位作者 刘福荣 张冬雪 《计算机仿真》 CSCD 北大核心 2013年第4期313-316,共4页
在求解多目标优化问题时,针对粒子群优化算法容易陷入局部极值的现象,提出了一种组合粒子群和差分进化的多目标优化算法,使用粒子群优化算法和差分进化算法共同产生新粒子,通过一个判断因子控制两种算法的使用比例,并对粒子群优化算法... 在求解多目标优化问题时,针对粒子群优化算法容易陷入局部极值的现象,提出了一种组合粒子群和差分进化的多目标优化算法,使用粒子群优化算法和差分进化算法共同产生新粒子,通过一个判断因子控制两种算法的使用比例,并对粒子群优化算法的速度更新公式进行了改变,以提高搜索效率。通过三个测试函数进行了仿真,并同NSGA-Ⅱ、MOPSO-CD进行了比较。实验结果表明改进算法求得的Pareto解集收敛性和多样性好,并且算法稳定性高,运行速度快。 展开更多
关键词 多目标优化 粒子优化 差分进化
下载PDF
融合自适应混沌差分进化的粒子群优化算法 被引量:13
12
作者 刘召军 高兴宝 《纺织高校基础科学学报》 CAS 2015年第1期116-123,共8页
针对粒子群优化算法易出现早熟收敛、收敛效率低的缺点,提出一种融合自适应混沌差分进化的粒子群优化算法.该算法首先将自适应混沌引入差分进化算法,再将所得结果进行一次校正变异和校正选择,最后将所得算法融合到粒子群优化算法,从而... 针对粒子群优化算法易出现早熟收敛、收敛效率低的缺点,提出一种融合自适应混沌差分进化的粒子群优化算法.该算法首先将自适应混沌引入差分进化算法,再将所得结果进行一次校正变异和校正选择,最后将所得算法融合到粒子群优化算法,从而有效地利用与平衡了粒子群优化算法和差分进化算法的探测和开发能力,且局部搜索能力增强,进一步提高算法的求解精度和效率.数值实验证明本文算法的有效性. 展开更多
关键词 粒子优化算法 差分进化算法 自适应混沌
下载PDF
混沌差分进化粒子群协同优化算法 被引量:3
13
作者 匡芳君 张思扬 +1 位作者 金忠 徐蔚鸿 《微电子学与计算机》 CSCD 北大核心 2014年第8期29-33,39,共6页
为有效地改善差分进化粒子群算法的性能,结合反向学习策略和信息交互机制,提出了一种新的混沌差分粒子群协同优化算法.该算法采用反向学习策略产生初始种群,使得初始个体尽可能均匀分布,然后将初始种群随机等分为双种群,对双种群分别采... 为有效地改善差分进化粒子群算法的性能,结合反向学习策略和信息交互机制,提出了一种新的混沌差分粒子群协同优化算法.该算法采用反向学习策略产生初始种群,使得初始个体尽可能均匀分布,然后将初始种群随机等分为双种群,对双种群分别采用改进的混沌差分进化算法和混沌粒子群优化算法进行协同寻优,并在双种群中引入信息交互学习机制,在维持种群多样性的同时加快收敛速度.通过对四个复杂高维的标准函数寻优测试,仿真结果表明,该算法能有效避免早熟收敛,收敛速度快,寻优精度较高,具有良好的全局搜索能力,鲁棒性好. 展开更多
关键词 差分进化 粒子优化 混沌搜索 协同优化 反向学习
下载PDF
差分进化混合粒子群算法求解装配式住宅项目进度优化问题 被引量:12
14
作者 赵平 吴昊 《计算机工程与科学》 CSCD 北大核心 2016年第7期1495-1501,共7页
针对装配式住宅项目进度优化问题,提出了基于差分算法(DE)和粒子群算法(PSO)的差分粒子群混合算法(DEPSO)。建立了以项目工期最优为目标的进度优化模型,通过在DE和PSO之间建立信息交流机制,避免了单一算法容易落入局部最优和精度低的缺... 针对装配式住宅项目进度优化问题,提出了基于差分算法(DE)和粒子群算法(PSO)的差分粒子群混合算法(DEPSO)。建立了以项目工期最优为目标的进度优化模型,通过在DE和PSO之间建立信息交流机制,避免了单一算法容易落入局部最优和精度低的缺陷。最后以某装配式住宅项目为例,通过三种算法的比较,结果表明DEPSO在求解装配式住宅项目进度优化中合理高效、鲁棒性较强,能有效地解决装配式住宅项目工期优化问题,有较大的应用价值。 展开更多
关键词 装配式住宅 差分算法 粒子算法 进度优化
下载PDF
一种融合差分进化的量子粒子群优化算法 被引量:12
15
作者 张兰 聂玉峰 《计算机仿真》 CSCD 北大核心 2016年第2期313-316,共4页
由于量子粒子群优化算法在迭代后期易出现粒子多样性差,收敛到局部最优解等缺点。为解决上述问题,提出一种融合差分进化的量子粒子群优化算法。上述算法在量子粒子群算法的上,首先利用差分思想对粒子的速度提出一种改进策略,再对陷入局... 由于量子粒子群优化算法在迭代后期易出现粒子多样性差,收敛到局部最优解等缺点。为解决上述问题,提出一种融合差分进化的量子粒子群优化算法。上述算法在量子粒子群算法的上,首先利用差分思想对粒子的速度提出一种改进策略,再对陷入局部最优的粒子进行交叉选择操作,从而较好的保持种群中粒子的多样性,避免粒子后期陷入局部最优。通过对3个测试函数进行的仿真,结果表明融合了差分进化算法的量子粒子群算法具有收敛速度快、收敛能力强等特点,解决了算法局部最优问题。 展开更多
关键词 量子粒子优化 差分进化 混合算法
下载PDF
基于差分进化混合粒子群算法的电力系统无功优化 被引量:4
16
作者 郭康 相志军 +2 位作者 徐玉琴 张丽 岳建房 《陕西电力》 2011年第10期37-40,44,共5页
差分进化混合粒子群算法(DEPSO)首先利用差分进化(DE)的变异和选择算子产生新的群体,然后通过使用粒子群优化算法(PSO)进行局部搜索。该算法发挥差分进化和粒子群优化算法各自拥有的特点,并克服自身存在的问题,具有收敛速度快、搜索能... 差分进化混合粒子群算法(DEPSO)首先利用差分进化(DE)的变异和选择算子产生新的群体,然后通过使用粒子群优化算法(PSO)进行局部搜索。该算法发挥差分进化和粒子群优化算法各自拥有的特点,并克服自身存在的问题,具有收敛速度快、搜索能力强、鲁棒性好的特点。将该算法用于电力系统无功优化,通过IEEE30节点系统的仿真计算证明了该算法的快速性和有效性。 展开更多
关键词 无功优化 差分进化 粒子
下载PDF
采用量子粒子群算法耦合差分进化算法优化BP神经网络的铣床热误差预测研究 被引量:6
17
作者 吴金文 王玉鹏 周海波 《制造技术与机床》 北大核心 2018年第6期105-109,共5页
针对铣床主轴运行产生的热误差问题,采用改进BP神经网络预测模型,并对预测结果进行验证。融合量子粒子群算法和差分进化算法的各自优点,给出混合算法寻优操作流程。分析BP神经网络结构,给出改进BP神经网络优化流程图,构造铣床热误差适... 针对铣床主轴运行产生的热误差问题,采用改进BP神经网络预测模型,并对预测结果进行验证。融合量子粒子群算法和差分进化算法的各自优点,给出混合算法寻优操作流程。分析BP神经网络结构,给出改进BP神经网络优化流程图,构造铣床热误差适应度函数,采用混合算法优化BP神经网络预测模型。通过具体实例对铣床热误差进行实验验证,预测结果显示:BP神经网络预测偏差值较大,在Y轴、Z轴方向预测产生的偏差最大值分别为7.3μm和7.5μm,改进BP神经网络预测偏差值较小,在Y轴、Z轴方向预测产生的偏差最大值分别为2.8μm和2.9μm。同时,改进BP神经网络预测铣床热误差与实际偏差值波动较小。采用改进BP神经网络预测铣床热误差精度较高,可以提高主轴加工工件的精度。 展开更多
关键词 量子粒子算法 差分进化算法 BP神经网络 铣床 热误差
下载PDF
基于混沌和差分进化的混合粒子群优化算法 被引量:24
18
作者 刘建平 《计算机仿真》 CSCD 北大核心 2012年第2期208-212,共5页
研究粒子群算法优化问题,由于标准粒子群优化算法(PSO)在高维复杂函数优化中易早收敛,影响全系统优化。为改进的混合粒子群优化算法,提出了一种基于混沌和差分进化的混合粒子群优化算法(CDEHPSO)。把基于Logistic映射的混沌序列引入到... 研究粒子群算法优化问题,由于标准粒子群优化算法(PSO)在高维复杂函数优化中易早收敛,影响全系统优化。为改进的混合粒子群优化算法,提出了一种基于混沌和差分进化的混合粒子群优化算法(CDEHPSO)。把基于Logistic映射的混沌序列引入到种群初始化操作中。在算法进化过程中,通过一种粒子早熟判断机制,在基本粒子群优化算法中引入了差分变异、交叉和选择操作,对早熟粒子个体进行差分进化操作,从而维持了种群的多样性并有效避免了算法陷入局部最优。仿真结果表明,相比于粒子群优化算法和差分进化算法(DE),CDEHPSO算法具有收敛速度快、搜索能力强的优点。 展开更多
关键词 混合算法 粒子优化 差分进化 混沌
下载PDF
混沌鲶鱼粒子群优化和差分进化混合算法 被引量:9
19
作者 易文周 《计算机工程与应用》 CSCD 2012年第15期54-58,87,共6页
为了改善粒子群优化算法的性能,引入了"鲶鱼效应"思想,改造粒子群个体的进化策略,用混沌方法改良了种群搜索策略,把这两者结合起来,既提高种群的广度搜索能力,又提升深度搜索能力,跟差分进化算法进行混合,算法优势互补,形成... 为了改善粒子群优化算法的性能,引入了"鲶鱼效应"思想,改造粒子群个体的进化策略,用混沌方法改良了种群搜索策略,把这两者结合起来,既提高种群的广度搜索能力,又提升深度搜索能力,跟差分进化算法进行混合,算法优势互补,形成一种新型的混合算法,更好地协调广度搜索和深度搜索之间的矛盾,提升算法性能。经过对三个标准函数的测试,仿真结果表明该算法在逃离局部陷阱能力和搜索精度均有显著提高。 展开更多
关键词 粒子优化算法 鲶鱼效应 混沌 差分进化算法 混合算法
下载PDF
基于差分进化粒子群混合优化算法的软测量建模 被引量:4
20
作者 陈如清 《化工学报》 EI CAS CSCD 北大核心 2009年第12期3052-3057,共6页
针对乙烯生产过程中,用传统方法难以直接完成对乙烯收率的在线测量的问题,提出了一种新型差分进化粒子群混合优化算法,建立了乙烯收率软测量建模。改进算法将优化过程分成两阶段,两分群分别采用粒子群算法和差分进化算法同时进行。迭代... 针对乙烯生产过程中,用传统方法难以直接完成对乙烯收率的在线测量的问题,提出了一种新型差分进化粒子群混合优化算法,建立了乙烯收率软测量建模。改进算法将优化过程分成两阶段,两分群分别采用粒子群算法和差分进化算法同时进行。迭代过程中引入进化速度因子进行算法局部收敛性判断,通过两个群体间的信息交流阻止算法陷入局部最优。对高维复杂函数寻优测试表明,算法的整体优化性能均强于基本粒子群算法和差分进化算法。应用结果表明,基于改进算法的软测量模型具有测量精度较高、泛化性能较好等优点。 展开更多
关键词 乙烯收率 软测量建模 差分进化算法 混合优化算法
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部