期刊文献+
共找到3,287篇文章
< 1 2 165 >
每页显示 20 50 100
粒子群算法优化支持向量回归的民机客舱座椅舒适度评价预测
1
作者 逄欣 苟秉宸 《机械科学与技术》 CSCD 北大核心 2024年第9期1624-1630,共7页
为建立民机客舱座椅舒适度主客观评价之间复杂非线性的评价预测模型,同时提高模型的预测精度,本文将支持向量回归(Support vector regression,SVR)中的惩罚参数C、通道控制参数ε以及核函数参数σ作为优化目标,利用粒子群算法(Particle ... 为建立民机客舱座椅舒适度主客观评价之间复杂非线性的评价预测模型,同时提高模型的预测精度,本文将支持向量回归(Support vector regression,SVR)中的惩罚参数C、通道控制参数ε以及核函数参数σ作为优化目标,利用粒子群算法(Particle swarm optimization,PSO)寻找全局最优参数,建立PSO-SVR人-民机客舱座椅舒适度评价预测模型,并对预测结果进行对比分析。分析结果表明:与BP神经网络(Back propagation,BP)模型相比,支持向量回归模型具有良好的鲁棒性;与SVR模型相比,PSO-SVR模型预测精度更高,误差波动小,预测结果均方误差(MSE)降低了85.95%,决定系数(R2)提高了15.42%。因此粒子群算法可以有效提高支持向量回归模型的预测精度和泛化能力。 展开更多
关键词 民机客舱座椅 支持向量回归 粒子算法 舒适度评价预测
下载PDF
基于粒子群算法优化支持向量回归的电火花加工工艺指标预测模型
2
作者 寇鹏远 王伟 +3 位作者 刘建勇 罗学科 李殿新 张慧杰 《电加工与模具》 北大核心 2024年第5期21-25,30,共6页
基于电火花加工过程中放电参数与表面粗糙度之间呈非线性关系,难以找到合适的电参数进行加工,提出了一种基于粒子群算法优化支持向量回归(PSO-SVR)的电火花加工工艺参数预测模型。研究结果表明,PSO-SVR在测试集上的均方根误差(RMSE)为0.... 基于电火花加工过程中放电参数与表面粗糙度之间呈非线性关系,难以找到合适的电参数进行加工,提出了一种基于粒子群算法优化支持向量回归(PSO-SVR)的电火花加工工艺参数预测模型。研究结果表明,PSO-SVR在测试集上的均方根误差(RMSE)为0.302,决定性系数(R^(2))为0.994,较传统SVR模型(RMSE为0.577,R^(2)为0.981)有显著提升,验证了PSO算法优化SVR参数的有效性。对原始数据进行预处理,并基于优化后的数据训练PSO-SVR模型,结果显示:经过数据预处理的PSO-SVR模型在测试集上的RMSE进一步降至0.255,R^(2)提高至0.996,预测精度和泛化能力均得到增强。 展开更多
关键词 支持向量回归 粒子算法 电火花加工 工艺参数 表面粗糙度
下载PDF
基于自适应混合粒子群算法优化支持向量机的乳腺癌预测
3
作者 王勇 吴慕云 《阜阳职业技术学院学报》 2024年第2期67-70,共4页
使用粒子群算法优化支持向量机的惩罚因子和核参数,提高分类的精度。粒子群算法收敛速度快,但是容易陷入局部最优。引入鲸鱼算法的包围运动和螺旋运动机制,形成参数自适应的混合粒子群优化算法,提升了算法的精度。在对数据进行预处理之... 使用粒子群算法优化支持向量机的惩罚因子和核参数,提高分类的精度。粒子群算法收敛速度快,但是容易陷入局部最优。引入鲸鱼算法的包围运动和螺旋运动机制,形成参数自适应的混合粒子群优化算法,提升了算法的精度。在对数据进行预处理之后,80%的数据用于模型的训练,剩余20%用于模型的测试。每次实验分别按照比例随机生成的训练集和测试集进行20次预测,计算平均正确率。实验表明,自适应混合粒子群算法优化精度高于标准粒子群算法和鲸鱼算法。 展开更多
关键词 乳腺癌 支持向量 自适应 粒子优化算法
下载PDF
基于粒子群优化支持向量机的纱线质量预测 被引量:1
4
作者 章军辉 陈明亮 +2 位作者 郭晓满 付宗杰 王静贤 《棉纺织技术》 CAS 2024年第4期16-22,共7页
针对复杂纺纱过程中成纱质量预测精度不足以及深度学习对庞大数据集依赖性的缺陷,提出一种基于粒子群算法优化支持向量机的小样本成纱质量预测方法。首先,对原始数据集样本序列进行灰色关联预处理,按照关联度大小进行排序,再结合先验知... 针对复杂纺纱过程中成纱质量预测精度不足以及深度学习对庞大数据集依赖性的缺陷,提出一种基于粒子群算法优化支持向量机的小样本成纱质量预测方法。首先,对原始数据集样本序列进行灰色关联预处理,按照关联度大小进行排序,再结合先验知识库筛选出主要的原棉纤维指标;其次,针对小样本预测问题,建立了线性核、多项式核、高斯核以及自适应带宽RBF核等不同核函数支持向量回归(SVR)预测模型;最后,采用粒子群优化(PSO)算法对高斯核SVR模型的超参数(正则化系数和带宽调节参数)进行辨识,设计一种综合适应度函数与线性递减惯性权重策略,用以提高PSO算法的寻优能力。仿真结果表明:PSO优化高斯核SVR模型对不同成纱质量指标有较好的预测效果,其平均相对误差不超过2%。认为:PSO优化高斯核SVR模型对成纱质量指标的预测误差较低,具有良好的适应性。 展开更多
关键词 支持向量 粒子优化 灰色关联 纱线质量预测 核函数
下载PDF
基于粒子群优化支持向量机的地下洞室支护设计
5
作者 侯德俊 梁熙文 +1 位作者 张昊辰 韩君格 《西北水电》 2024年第3期101-107,共7页
水电站地下洞室支护设计因其环境复杂性而面临重大挑战,现有方案受限于主观经验和低精度等问题,难以满足设计需求。为提高地下洞室设计效率和可靠性,通过引入粒子群优化(PSO)优化支持向量机(SVM)参数,开发地下洞室支护智能设计模型。模... 水电站地下洞室支护设计因其环境复杂性而面临重大挑战,现有方案受限于主观经验和低精度等问题,难以满足设计需求。为提高地下洞室设计效率和可靠性,通过引入粒子群优化(PSO)优化支持向量机(SVM)参数,开发地下洞室支护智能设计模型。模型将洞室跨度、洞室高度、洞室高跨比、洞室埋深、围岩类别、岩石饱和单轴抗压强度、最大主应力值、岩石强度应力比作为输入指标。通过对100个国内外水电站地下洞室支护案例的训练测试。结果表明:该模型在各项输出指标上显示了高度准确性,其中喷混厚度、锚杆直径、锚杆间排距的定类准确率分别达到90%、85%、90%,锚杆长度的定量预测拟合优度为0.843。研究成果可为地下洞室支护设计提供一种新方法。 展开更多
关键词 地下洞室 支护设计 粒子优化 支持向量
下载PDF
基于粒子群优化和最小二乘支持向量机的储罐腐蚀速率预测
6
作者 王明慧 党鹏飞 +1 位作者 杨铮鑫 龚博 《腐蚀与防护》 CAS CSCD 北大核心 2024年第8期71-76,共6页
利用粒子群优化(PSO)算法的全局寻优能力,对最小二乘支持向量机(LSSVM)的正则化参数和核参数进行优化,提出了基于PSO-LSSVM的大型储罐腐蚀速率的预测方法。采用该方法对储罐腐蚀速率进行预测,并利用实测数据对模型的预测精度进行验证。... 利用粒子群优化(PSO)算法的全局寻优能力,对最小二乘支持向量机(LSSVM)的正则化参数和核参数进行优化,提出了基于PSO-LSSVM的大型储罐腐蚀速率的预测方法。采用该方法对储罐腐蚀速率进行预测,并利用实测数据对模型的预测精度进行验证。结果表明:使用PSOLSSVM获得的腐蚀速率预测结果与实际腐蚀速率较为吻合,罐顶、第一层罐壁、罐底预测结果的平均绝对百分误差分别为2.265%、3.077%、1.18%,均方根误差分别为0.010%、0.012%、0.011%,决定系数分别为0.973、0.982、0.976。该方法可以对储罐内腐蚀速率进行有效的预测。 展开更多
关键词 粒子优化(PSO) 最小二乘支持向量机(LSSVM) 腐蚀速率预测
下载PDF
基于贝叶斯优化支持向量回归的流线型箱梁颤振气动外形优化方法 被引量:1
7
作者 封周权 邓佳逸 +1 位作者 华旭刚 陈政清 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2024年第2期275-284,共10页
为解决风洞试验耗时费力和计算流体动力学(CFD)计算量大的问题,提出了一套新型流线型箱梁断面颤振性能气动外形优化方法.以风嘴参数为设计变量,利用CFD获取断面三分力系数,以准定常理论估算的颤振临界风速为优化目标.根据贝叶斯优化支... 为解决风洞试验耗时费力和计算流体动力学(CFD)计算量大的问题,提出了一套新型流线型箱梁断面颤振性能气动外形优化方法.以风嘴参数为设计变量,利用CFD获取断面三分力系数,以准定常理论估算的颤振临界风速为优化目标.根据贝叶斯优化支持向量回归构建代理模型,利用混合加点法更新模型,通过寻优算法确定最优断面.以虎门大桥为例,得到桥梁在可行域内颤振性能最佳的断面方案.结果表明,风嘴升高,颤振临界风速先增后减,相对高度为0.6时整体性能较优,相对高度为0.7时可获得最优断面.底板宽增加,颤振性能显著降低,下斜腹板倾角为14°~16°时颤振性能最优.断面优化后桥梁颤振临界风速相比原始断面提升约31%. 展开更多
关键词 流线型箱梁 气动优化 颤振性能 支持向量回归 贝叶斯优化 准定常理论
下载PDF
基于斑马算法优化支持向量回归机模型预测页岩地层压力
8
作者 赵军 李勇 +2 位作者 文晓峰 徐文远 焦世祥 《岩性油气藏》 CAS CSCD 北大核心 2024年第6期12-22,共11页
针对陇东地区三叠系延长组7段(长7段)页岩孔隙结构复杂、非均质性强、地层压力预测精度较低等问题,提出了一种基于斑马算法优化支持向量回归机(ZOA-SVR)模型预测地层压力的方法,并在实际钻井中进行了应用,将预测结果与基于机器算法的模... 针对陇东地区三叠系延长组7段(长7段)页岩孔隙结构复杂、非均质性强、地层压力预测精度较低等问题,提出了一种基于斑马算法优化支持向量回归机(ZOA-SVR)模型预测地层压力的方法,并在实际钻井中进行了应用,将预测结果与基于机器算法的模型和常规地层压力预测方法结果进行了对比。研究结果表明:①ZOA-SVR模型以实测地层压力数据为目标变量,优选与陇东地区长7段页岩地层压力数据关联度达到0.70以上的深度、声波时差、密度、补偿中子、自然伽马、深侧向电阻率、泥质含量等7个参数作为输入特征参数,设置训练样本数为40,交叉验证折数为5,初始化斑马种群数量为10,最大迭代次数为70,对惩罚因子和核参数进行优化并建模,参数优化后拟合优度指标R2达到0.942,模型预测的地层压力数据在训练集和测试集上的绝对误差均低于1 MPa,预测测试集地层压力数据与实测压力数据的平均相对误差为2.42%。②ZOA-SVR模型在研究区长7段地层压力预测中优势明显,比基于粒子群优化算法、灰狼算法和蚁群算法的模型具有更好的参数调节及优化能力,R2分别提高了0.209,0.327,0.142;比等效深度法、Eaton法、有效应力法预测的地层压力精度更高,相对误差分别降低了32.53%,15.31%,5.91%。③ZOA-SVR模型在实际钻井中的应用结果显示,研究区长7段地层压力在垂向上分布较稳定,泥页岩段的地层压力高于砂岩段,地层压力系数主要为0.80~0.90,整体上属于异常低压环境,与实际地层情况相符。 展开更多
关键词 页岩 地层压力 斑马优化算法 支持向量回归 机器学习 测井曲线 长7段 三叠系 陇东地区
下载PDF
基于混沌粒子群改进支持向量机对露天矿边坡稳定性的分类预测
9
作者 赵国彦 邹景煜 王猛 《矿冶工程》 CAS 北大核心 2024年第2期8-12,共5页
为了简便有效地评估边坡稳定性状态,针对目前传统机器学习的算法选择与超参数优化等难题,提出了基于混沌粒子群优化算法的4种机器学习模型,并对其预测性能进行了对比。建立了包含221组露天矿边坡稳定性案例的数据库,其中80%的数据用于训... 为了简便有效地评估边坡稳定性状态,针对目前传统机器学习的算法选择与超参数优化等难题,提出了基于混沌粒子群优化算法的4种机器学习模型,并对其预测性能进行了对比。建立了包含221组露天矿边坡稳定性案例的数据库,其中80%的数据用于训练,20%的数据用于模型测试。4种模型预测结果及工程实例验证结果表明,基于混沌粒子群改进支持向量机模型的预测效果上总体优于其他3种机器学习模型,预测准确率88%,能够有效预测边坡稳定性,可为露天矿边坡安全提供可靠的预测结果。 展开更多
关键词 边坡稳定性 混沌粒子优化 支持向量 预测
下载PDF
基于改进灰狼优化与支持向量回归的滑坡位移预测 被引量:2
10
作者 任帅 纪元法 +2 位作者 孙希延 韦照川 林子安 《计算机应用》 CSCD 北大核心 2024年第3期972-982,共11页
针对滑坡位移难以预测、影响因素难以选择等问题,提出一种结合了二次移动平均(DMA)法、变分模态分解(VMD)、改进灰狼优化(IGWO)算法与支持向量回归(SVR)的模型进行滑坡位移预测。首先,利用DMA提取滑坡位移趋势项和周期项,采用多项式拟... 针对滑坡位移难以预测、影响因素难以选择等问题,提出一种结合了二次移动平均(DMA)法、变分模态分解(VMD)、改进灰狼优化(IGWO)算法与支持向量回归(SVR)的模型进行滑坡位移预测。首先,利用DMA提取滑坡位移趋势项和周期项,采用多项式拟合对趋势项进行预测;其次,对滑坡周期项的影响因素进行分类,采用VMD对原始影响因子序列进行分解获得最优序列;再次,提出一种结合SVR与基于改进Circle多策略的灰狼优化算法CTGWO-SVR(Circle Tactics Grey Wolf Optimizer with SVR)对滑坡周期项进行预测;最后采用时间序列加法模型求出累计位移预测序列,并采用灰色预测的后验证差校验和小概率误差对模型进行评价。实验结果表明,与GA-SVR和GWO-SVR模型相比,CTGWO-SVR的预测精度更高,拟合度达到0.979,均方根误差分别减小了51.47%与59.25%,预测精度等级为一级,可满足滑坡预测的实时性和准确性要求。 展开更多
关键词 滑坡位移预测 位移分解 时间序列 变分模态分解 灰色关联分析 灰狼优化算法 支持向量回归
下载PDF
基于灰狼优化支持向量机回归与SHAP值的锡冶炼能耗预测 被引量:2
11
作者 马朝君 彭巨擘 +4 位作者 袁海滨 郑光发 么长慧 章夏冰 冯早 《有色金属(冶炼部分)》 CAS 北大核心 2024年第2期1-7,共7页
锡冶炼过程综合能源消耗占整个锡生产过程90%,存在很大节能潜力。针对锡冶炼过程综合能耗机理模型难以建立、导致预测准确度不高的问题,提出灰狼优化的支持向量机回归(GWO-SVR)模型用于锡冶炼过程综合能耗的预测,并以某锡冶炼厂为例,将... 锡冶炼过程综合能源消耗占整个锡生产过程90%,存在很大节能潜力。针对锡冶炼过程综合能耗机理模型难以建立、导致预测准确度不高的问题,提出灰狼优化的支持向量机回归(GWO-SVR)模型用于锡冶炼过程综合能耗的预测,并以某锡冶炼厂为例,将所提模型与SVR、RF(随机森林)、BP(反向传播神经网络)、LR(线性回归)模型进行比较。结果表明,GWO-SVR模型可获得最理想的预测结果,在预测精度上相比于其他机器学习算法有着巨大优势。此外,使用SHAP值从全局解释和单样本解释两个方面解释所建立的GWO-SVR模型,可视化特征对输出的贡献,增加了GWO-SVR的可解释性,并以此制定可靠的节能策略。 展开更多
关键词 锡冶炼预测模型 模型可解释性 支持向量回归 灰狼优化算法
下载PDF
改进粒子群算法优化支持向量机的螺旋CT电气故障诊断研究 被引量:2
12
作者 汤德荣 《九江学院学报(自然科学版)》 CAS 2023年第4期27-31,共5页
文章研究改进粒子群算法优化支持向量机螺旋CT电气故障诊断方法,提高螺旋CT电气故障诊断精度与诊断效率,以满足实际螺旋CT电气故障诊断工作需要。采用最小支持向量机通过非线性函数变换,将多输入单输出的螺旋CT电气故障诊断最优解的求... 文章研究改进粒子群算法优化支持向量机螺旋CT电气故障诊断方法,提高螺旋CT电气故障诊断精度与诊断效率,以满足实际螺旋CT电气故障诊断工作需要。采用最小支持向量机通过非线性函数变换,将多输入单输出的螺旋CT电气故障诊断最优解的求解转换为高维空间最优分类面的求解,实现螺旋CT电气故障诊断;采用改进粒子群算法与交叉验证原理优化最小二乘支持向量机的核函数,提高最小二乘支持向量机算法泛化能力,避免核函数状态影响螺旋CT电气故障诊断精度。实验结果表明:该方法的螺旋CT电气故障诊断结果与实际故障类型几乎一致,核函数优化后螺旋CT电气故障诊断分类准确率高达90%,可提升螺旋CT电气故障诊断的效率。 展开更多
关键词 改进粒子 支持向量 螺旋CT 故障诊断 尺度变化 交叉验证
下载PDF
基于粒子群-支持向量机算法的激光诱导击穿光谱钢铁快速检测与分类
13
作者 曾庆栋 陈光辉 +8 位作者 李文鑫 孟久灵 李耿 童巨红 田志辉 张晓林 李国辉 郭连波 肖永军 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第6期1559-1565,共7页
钢铁是国民经济中的支柱性产业,由于受生产技术的限制,我国钢铁产品主要集中为质量参差不齐的中低端产品,废品率较高,易造成资源浪费和环境污染。因此,钢铁产品的快速检测与鉴别分类,对保护环境以及提高钢铁资源的回收利用率有着重要意... 钢铁是国民经济中的支柱性产业,由于受生产技术的限制,我国钢铁产品主要集中为质量参差不齐的中低端产品,废品率较高,易造成资源浪费和环境污染。因此,钢铁产品的快速检测与鉴别分类,对保护环境以及提高钢铁资源的回收利用率有着重要意义。利用激光诱导击穿光谱技术(LIBS)进行10种钢铁样品光谱数据的快速采集,并采用支持向量机(SVM)算法对其数据进行学习建模,得到钢铁快速分类模型。然而,由于不同钢铁样品的光谱数据特征是复杂且相似的,导致设置的模型参数也会对SVM模型的分类结果有着较大的影响。为了实现对不同牌号钢铁合金的快速检测分类,实验中采用粒子群算法(PSO)与网格寻优法两种不同方法来优化模型参数,并分别选取样品中6种微量元素(Mn、Cr、Cu、V、Mo、Ti)的17条特征谱线,和经主成分分析法(PCA)对全谱数据降维提取得到的前17个主成分作为模型的输入,建立PSO-SVM、PSO-PCA-SVM、PCA-SVM和SVM四种分类模型。实验结果表明,相比于精度最高的PCA-SVM模型的优化时间(257.84 s),PSO-SVM模型优化时间最短(11.5 s),且识别精度可达96.67%,与PCA-SVM模型的精度(97.5%)几乎相当。该结果表明LIBS结合PSO-SVM算法可实现快速的钢铁检测与分类,该方法为钢铁产品的快速检测与分类提供了一种新的解决途径。 展开更多
关键词 激光诱导击穿光谱 支持向量 粒子算法 钢铁分类
下载PDF
基于鲸鱼优化算法-支持向量回归的汽车运动状态估计
14
作者 尤勇 孟云龙 +1 位作者 吴景涛 王长青 《中国机械工程》 EI CAS CSCD 北大核心 2024年第6期973-981,992,共10页
为了不依赖动力学模型精度而准确地获取车辆运动状态信息,提出一种基于鲸鱼优化算法-支持向量回归(WOA-SVR)的车辆状态估计算法。首先通过分析车辆动力学基本特性,设计了侧向速度、横摆角速度与车速分离的支持向量回归估计架构;然后对... 为了不依赖动力学模型精度而准确地获取车辆运动状态信息,提出一种基于鲸鱼优化算法-支持向量回归(WOA-SVR)的车辆状态估计算法。首先通过分析车辆动力学基本特性,设计了侧向速度、横摆角速度与车速分离的支持向量回归估计架构;然后对支持向量回归(SVR)模型进行多种行驶工况组成的数据集训练,在训练过程中运用鲸鱼优化算法对松弛变量中的惩罚因子c与核函数参数g进行寻优;最后对估计算法进行单移线、扫频试验虚拟仿真和实车ABS制动、双移线试验验证。结果表明,该算法有效提高了估计精度,且对车速的变化具有鲁棒性,可以实现准确的不依赖动力学模型精度的汽车运动状态估计。 展开更多
关键词 车辆状态估计 动力学模型 机器学习 支持向量回归 鲸鱼优化算法
下载PDF
基于支持向量机回归算法的盾构下穿市政管线参数优化研究
15
作者 王非 韩凯杰 +2 位作者 余鑫 金平 许卓淋 《广东土木与建筑》 2024年第5期65-67,共3页
随着盾构法施工在我国城市地铁隧道建设的广泛应用,盾构施工将面临越来越复杂的施工场景,尤其是在城市生活区的施工中,将不可避免地穿越各类复杂的市政管线。以合肥某地铁盾构工程下穿市政管线为背景,通过建立数值模型,构建了基于支持... 随着盾构法施工在我国城市地铁隧道建设的广泛应用,盾构施工将面临越来越复杂的施工场景,尤其是在城市生活区的施工中,将不可避免地穿越各类复杂的市政管线。以合肥某地铁盾构工程下穿市政管线为背景,通过建立数值模型,构建了基于支持向量机回归(SVMR)算法的机器学习模型,并通过优化算法反向求解得到了符合施工要求的盾构参数优化方案。研究结果表明,方法的有效性通过了数值模拟试验和工程实践的验证,能够基于已有的少量盾构参数,针对关键掘进参数如推力、刀盘转速等进行优化,并提出最优组合方案,以确保施工的安全与高效,可为类似工程提供参考。 展开更多
关键词 盾构下穿管线 支持向量回归 反向求解 掘进参数优化
下载PDF
基于多元线性回归和改进粒子群算法的输电网监测点优化配置策略
16
作者 傅智为 《电工技术》 2024年第19期40-45,共6页
输电网的安全稳定运行非常重要,一旦发生电压暂降就可能严重影响电力系统的安全和正常运行。为获取输电网的运行情况,需配置一系列数据采集设备。但是,配置大量监视器可能会导致高昂的投资和维护成本,且可能会产生不必要的冗余信息。为... 输电网的安全稳定运行非常重要,一旦发生电压暂降就可能严重影响电力系统的安全和正常运行。为获取输电网的运行情况,需配置一系列数据采集设备。但是,配置大量监视器可能会导致高昂的投资和维护成本,且可能会产生不必要的冗余信息。为此,提出了一种基于多元线性回归和改进粒子群算法的输电网监测点优化配置策略,以确定监测器的最佳数量和位置。首先,为了减少监测设备的冗余,引入Mallow的Cp作为线性回归模型的评价标准,并对粒子群算法进行改进。然后,通过最小化未监控母线电压的误差平方和,对获得的整个系统的最优配置策略进行进一步筛选。最后,基于MATLAB/Simulink仿真平台,在IEEE 30-BUS系统中对所提出方法的正确性和有效性进行了验证。 展开更多
关键词 监测点的优化配置 改进的粒子算法 多元线性回归 电压暂降
下载PDF
结合环论的粒子群优化算法进行冠心病合并慢性心衰预后分析
17
作者 张瑜 田晶 +3 位作者 杨弘 韩港飞 韩清华 张岩波 《中国卫生统计》 CSCD 北大核心 2024年第1期53-57,共5页
目的 采用结合环论的粒子群优化算法(hybridization of ring theory-based evolutionary algorithm and particle swarm optimization, RTPSO)对数据进行均衡化处理,以构建高性能冠心病合并慢性心衰预后模型。方法 分别用SMOTE算法、RT... 目的 采用结合环论的粒子群优化算法(hybridization of ring theory-based evolutionary algorithm and particle swarm optimization, RTPSO)对数据进行均衡化处理,以构建高性能冠心病合并慢性心衰预后模型。方法 分别用SMOTE算法、RTPSO算法对数据进行均衡化处理,在均衡化数据集上构建logistic回归、随机森林、支持向量机模型。结果 本研究共纳入2229例冠心病合并慢性心衰患者,依据筛选出的BMI、射血分数、N端前脑钠肽等22个变量构建模型。用灵敏度、特异度、准确率、F-measure和AUC值评价模型性能,其中RF、SVM、logistic回归、RF-RTPSO、SVM-RTPSO、Logistic-RTPSO灵敏度的中位数分别为0.0172、0.0773、0.0776、0.7568、0.7640、0.7838;F-measure的中位数分别为0.0338、0.1143、0.1283、0.3412、0.3505、0.4545;AUC的中位数分别为0.5086、0.5264、0.5313、0.8016、0.7785、0.7985。结论 RTPSO算法可以从多数类样本中选择有代表性的少数样本,从而达到数据均衡化,使分类模型具备更高的预测性能,指导临床医生发现高危患者,尽早预防不良事件的发生。 展开更多
关键词 慢性心衰 类不平衡 粒子优化 随机森林 支持向量
下载PDF
面向XRF的竞争性自适应重加权算法和粒子群优化的支持向量机定量分析研究 被引量:5
18
作者 程惠珠 杨婉琪 +2 位作者 李福生 马骞 赵彦春 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2023年第12期3742-3746,共5页
研究高效、准确、便捷的土壤重金属检测方法对于了解土壤的污染状况以及开展污染防治工作具有重要的意义。由于X射线荧光光谱分析(XRF)技术具备快速、准确、无损检测、样品制备简单等优势,在土壤重元素定量检测获得广泛应用。XRF仪器测... 研究高效、准确、便捷的土壤重金属检测方法对于了解土壤的污染状况以及开展污染防治工作具有重要的意义。由于X射线荧光光谱分析(XRF)技术具备快速、准确、无损检测、样品制备简单等优势,在土壤重元素定量检测获得广泛应用。XRF仪器测试标准样品的荧光光谱并建立校准曲线,通过反演计算得到待测样品的元素含量。由于样品元素间存在基体效应,以及荧光谱特征峰存在叠加干扰,未经优化的校准曲线的线性度较差,这给反演计算来困难。为了解决上述问题,分别利用小波变换、非对称加权惩罚最小二乘法(arPLS)对光谱进行去噪和扣除本底基线,提高校准曲线的决定系数(R2);运用竞争性自适应重加权算法(CARS),针对不同目标元素优化变量选取;进一步地,基于选取的变量建立粒子群算法(PSO)优化的支持向量机回归(SVR)模型,并通过该模型反演计算各元素含量,提高定量分析的准确度和预测的泛化能力。实验结果显示,经过小波去噪和arPLS本底扣除后的校准曲线的决定系数(R2)有明显提升,Cr、Cu、Zn、As、Pb分别从0.965、0.979、0.971、0.794、0.915提高为0.979、0.987、0.981、0.828、0.953;通过CARS选取的谱线变量的个数大幅度减少,从2 048个通道降低到30个以下,为原来变量个数的1.5%,提高了变量选择的精准性;与偏最小二乘法(PLS)、未优化的SVR模型进行对比,采用CARS变量选择和PSO优化的SVR模型进行含量预测,训练集RC2与测试集RP2的决定系数分别在0.99、0.90以上,预测准确性有明显提高。因此,所提出的竞争性自适应重加权算法和PSO优化的SVR定量分析模型对于土壤重金属元素定量分析具有较好的理论指导和应用价值。 展开更多
关键词 X射线荧光光谱 土壤重金属 竞争性自适应重加权算法 粒子算法 支持向量回归模型
下载PDF
基于自适应扰动量子粒子群算法参数优化的支持向量回归机短期风电功率预测 被引量:47
19
作者 陈道君 龚庆武 +2 位作者 金朝意 张静 王定美 《电网技术》 EI CSCD 北大核心 2013年第4期974-980,共7页
智能电网的建设和大规模风电接入电网对短期风电功率预测精度提出了更高的要求。为了克服支持向量回归机(support vector regression machine,SVR)依赖人为经验选择学习参数的弊端,在量子粒子群优化(quantum-behaved particle swarm opt... 智能电网的建设和大规模风电接入电网对短期风电功率预测精度提出了更高的要求。为了克服支持向量回归机(support vector regression machine,SVR)依赖人为经验选择学习参数的弊端,在量子粒子群优化(quantum-behaved particle swarm optimization,QPSO)算法中加入自适应早熟判定准则、混合扰动算子和动态扩张收缩系数,提出了自适应扰动量子粒子群优化算法(adaptive disturbance quantum-behaved particle swarm optimization,ADQPSO),并使用ADQPSO优化选择SVR的学习参数。实例研究表明,ADQPSO算法全局寻优能力强、鲁棒性好、计算耗时短,利用ADQPSO优化得到的SVR参数,可有效提高模型的预测精度;与反向传播神经网络(back propagation neural network,BPNN)和径向基神经网络(radial basis functionneural network,RBFNN)相比,提出的ADQPSO-SVR能够提高短期风电功率预测的准确性和稳定性。 展开更多
关键词 短期风电功率预测 学习参数选择 自适应扰动量子粒子优化算法 支持向量回归
下载PDF
基于粒子群优化鲁棒支持向量回归机的中长期负荷预测 被引量:21
20
作者 张雪君 陈刚 +2 位作者 周杰 马爱军 张忠静 《电力系统保护与控制》 EI CSCD 北大核心 2009年第21期77-81,共5页
支持向量机(SVM)已经成功地应用于解决非线性回归和时间序列问题,并且已经开始用于中长期负荷预测。提出了一种基于鲁棒支持向量回归机RSVR(Robust Support Vector Regression)的中长期负荷预测的新方法。给出利用粒子群优化算法对鲁棒... 支持向量机(SVM)已经成功地应用于解决非线性回归和时间序列问题,并且已经开始用于中长期负荷预测。提出了一种基于鲁棒支持向量回归机RSVR(Robust Support Vector Regression)的中长期负荷预测的新方法。给出利用粒子群优化算法对鲁棒支持向量机系数优化选择的方法。建立基于此原理的中长期负荷预测模型,算例分析比较验证本文方法具有预测精度高、计算量小等特点和优势。 展开更多
关键词 中长期负荷预测 鲁棒性 支持向量 回归估计 粒子优化算法
下载PDF
上一页 1 2 165 下一页 到第
使用帮助 返回顶部