期刊文献+
共找到1,900篇文章
< 1 2 95 >
每页显示 20 50 100
基于粒子群优化径向基神经网络的水质指标预测 被引量:4
1
作者 操建华 林宏伟 张实诚 《煤炭技术》 CAS 北大核心 2010年第2期201-204,共4页
为掌握丹江口库区水质未来的变化趋势以及预防污染事件的发生,建立了一个水质指标的预测模型。利用库区某断面自动检测站的水质指标实测参数作为学习样本,选取化学需养量(COD)、生化需养量(BOD)、PH值、氨氮(NH3-N)、总磷(TP)、总氮(TN... 为掌握丹江口库区水质未来的变化趋势以及预防污染事件的发生,建立了一个水质指标的预测模型。利用库区某断面自动检测站的水质指标实测参数作为学习样本,选取化学需养量(COD)、生化需养量(BOD)、PH值、氨氮(NH3-N)、总磷(TP)、总氮(TN)等指标作为预测参数,运用粒子群算法优化RBF神经网络的预测模型,对丹江口库区水质指标进行预测,结果表明,利用基于粒子群优化径向基神经网络对水质指标预测具有较高的精度,相对误差小于7%,该模型具有良好的可行性和有效性。 展开更多
关键词 粒子 径向函数 神经网络 水质 预测 丹江口水库
下载PDF
基于粒子群优化径向基神经网络在模拟电路故障诊断中的应用 被引量:2
2
作者 操建华 《制造业自动化》 北大核心 2010年第8期92-94,共3页
为检测和诊断模拟电路中的故障,提出粒子群算法优化RBF神经网络的故障诊断方法,即把通过特征提取获得的模拟电路故障特征量作为神经网络的输入,然后利用训练好的粒子群优化后的RBF神经网络进行故障诊断。结果表明,该方法具有良好的分类... 为检测和诊断模拟电路中的故障,提出粒子群算法优化RBF神经网络的故障诊断方法,即把通过特征提取获得的模拟电路故障特征量作为神经网络的输入,然后利用训练好的粒子群优化后的RBF神经网络进行故障诊断。结果表明,该方法具有良好的分类效果,能够提高诊断精确度,对于模拟电路的故障是一种有效的诊断方法。 展开更多
关键词 粒子 径向函数 神经网络 模拟电路 故障诊断
下载PDF
基于神经网络和粒子群算法的硅钢工艺参数优化
3
作者 蔡全福 贺立红 +6 位作者 王志军 姚文达 欧阳帆 廖靖远 王盛 刘船行 刘庆捷 《电工钢》 CAS 2024年第2期37-40,共4页
结合BP神经网络与粒子群算法,提出了一种降低硅钢铁损的工艺参数优化策略。首先,采用BP神经网络建立了对硅钢铁损的预测模型,模型具有很高的拟合精度和预测精度。然后在工艺参数的优化方面,以BP神经网络预测模型作为适应度函数,选取连... 结合BP神经网络与粒子群算法,提出了一种降低硅钢铁损的工艺参数优化策略。首先,采用BP神经网络建立了对硅钢铁损的预测模型,模型具有很高的拟合精度和预测精度。然后在工艺参数的优化方面,以BP神经网络预测模型作为适应度函数,选取连续退火RTF炉段的各段炉温作为优化变量,采用粒子群算法优化这些工艺参数。结果显示,基于BP神经网络,采用粒子群算法对部分工艺参数进行优化后,硅钢铁损明显降低,具有一定的指导意义。 展开更多
关键词 神经网络 粒子算法 工艺参数优化
下载PDF
基于粒子群优化BP神经网络的中空夹层钢管混凝土柱轴压承载力研究
4
作者 赵均海 华林炜 王昱 《建筑钢结构进展》 CSCD 北大核心 2024年第9期45-52,共8页
圆中空夹层钢管混凝土(concrete filled double-skin steel tube,CFDST)柱因其独特的结构形式与优异的力学性能,已成为现代工程结构中的主要受力构件。然而外钢管、内钢管与核心混凝土之间的相互约束作用导致其受力比较复杂。为此,采用P... 圆中空夹层钢管混凝土(concrete filled double-skin steel tube,CFDST)柱因其独特的结构形式与优异的力学性能,已成为现代工程结构中的主要受力构件。然而外钢管、内钢管与核心混凝土之间的相互约束作用导致其受力比较复杂。为此,采用PSO-BP混合神经网络算法对圆CFDST柱的轴压承载力进行了研究。收集了167组数据建立数据库,并选取8种影响因素作为输入层参数,轴压承载力作为输出层参数,分析了传统BP神经网络模型所存在的缺陷,建立了PSO-BP神经网络模型。此外,将机器学习模型与3种规范的结果进行比较,结果表明机器学习模型的精度比3种规范的精度更高。相较于BP神经网络模型,PSO-BP神经网络模型具有更好的预测能力,更有助于预测CFDST柱的轴压承载力,对工程上研究CFDST柱的力学性能有着重要意义。 展开更多
关键词 BP神经网络 粒子优化算法 中空夹层钢管混凝土柱 轴压承载力 机器学习模型
下载PDF
基于粒子群优化算法的电弧增材制造焊道尺寸反向传播神经网络预测模型 被引量:1
5
作者 刘浩民 杨洪才 +3 位作者 刘战 李子葳 孙俊华 张元彬(导师) 《机械工程材料》 CAS CSCD 北大核心 2024年第2期97-102,共6页
选取焊接电流、送丝速度、焊接速度及基板温度作为输入变量,焊道熔宽和余高作为输出变量,选择粒子群优化(PSO)算法中的最优粒子惯性权重和学习因子,构建熔化极惰性气体保护电弧增材制造316L不锈钢PSO反向传播(PSO-BP)神经网络模型。结... 选取焊接电流、送丝速度、焊接速度及基板温度作为输入变量,焊道熔宽和余高作为输出变量,选择粒子群优化(PSO)算法中的最优粒子惯性权重和学习因子,构建熔化极惰性气体保护电弧增材制造316L不锈钢PSO反向传播(PSO-BP)神经网络模型。结果表明:PSO-BP神经网络模型预测的焊道熔宽与期望值的均方根误差、最大相对误差与平均相对误差分别为0.386,13.477%,2.580%,焊道余高的分别为0.152,10.372%,2.810%;相较于BP神经网络模型,PSOBP神经网络模型对焊道尺寸的预测精度更高,稳定性更强。 展开更多
关键词 电弧增材制造 焊道尺寸 神经网络 粒子优化
下载PDF
基于GA-BP神经网络和改进粒子群算法的碰撞射流和冷却顶板复合空调系统优化
6
作者 齐贺闯 叶筱 +2 位作者 高延峰 亢燕铭 钟珂 《东华大学学报(自然科学版)》 CAS 北大核心 2024年第1期110-117,共8页
对碰撞射流和辐射顶板(IJV/RC)复合空调在不同室内负荷条件下运行时的室内热环境进行数值模拟,基于遗传算法-反馈(GA-BP)神经网络建立运行性能(吹风感R_(PD),头足温差Δt,空气交换效率e ACE,工作区平均温度t_(a))与设计变量(送风温度t_... 对碰撞射流和辐射顶板(IJV/RC)复合空调在不同室内负荷条件下运行时的室内热环境进行数值模拟,基于遗传算法-反馈(GA-BP)神经网络建立运行性能(吹风感R_(PD),头足温差Δt,空气交换效率e ACE,工作区平均温度t_(a))与设计变量(送风温度t_(s)、送风速度v_(s)、冷却顶板内表面温度t_(c)、房间负荷Q_(c))之间的预测模型,通过相关性分析确定设计变量对运行性能影响的显著性并排序。结果表明,增大v_(s)可使Δt降低,但R_(PD)增大;增大t_(c)有助于降低Δt和R_(PD),但t_(a)升高;为使t_(a)下降,可通过降低t_(s)来实现,但室内空气质量变差。为确保IJV/RC复合空调能在保证室内热舒适的同时提供良好室内空气品质,利用改进粒子群算法对复合空调的运行性能进行多目标同时优化,建立不同房间负荷条件下的设计参量最优匹配关系。研究结果可为IJV/RC复合空调的优化设计和运行控制提供理论指导。 展开更多
关键词 碰撞射流通风 冷却顶板 GA-BP神经网络 粒子优化算法 多目标优化
下载PDF
基于粒子群优化的小波神经网络算法及风机基础监测应用
7
作者 潘国俊 胡金林 《现代测绘》 2024年第3期50-53,共4页
安全监测是大型风机建筑物的健康保障。由于风机往往处于复杂环境,对其基础的沉降监测和预报非常重要。而传统预报方法存在精度低、可靠性差等局限性。以某风机基础多期沉降监测数据为例,给出15台风机基础各18个监测点的竖向位移。同时... 安全监测是大型风机建筑物的健康保障。由于风机往往处于复杂环境,对其基础的沉降监测和预报非常重要。而传统预报方法存在精度低、可靠性差等局限性。以某风机基础多期沉降监测数据为例,给出15台风机基础各18个监测点的竖向位移。同时,利用粒子群算法对小波神经网络进行全局参数寻优,建立风机基础的竖向位移预报模型。结果表明,基于粒子群优化的小波神经网络算法的预报精度比传统灰色模型方法和小波神经网络方法分别提高22.9%和4.4%。 展开更多
关键词 风机 粒子优化 沉降监测 小波神经网络
下载PDF
基于粒子群优化卷积神经网络的深基坑变形预测方法 被引量:1
8
作者 赵颍 《建筑技术开发》 2024年第3期162-164,共3页
以华润阜阳中心项目五期总承包项目为研究对象,基于粒子群优化的卷积神经网络法对深基坑围护结构的水平位移和地表沉降进行预测,随着监测时间的增加,深基坑围护结构水平位移量和地表沉降量的预测值与实测值均具有一致的变化规律;与实测... 以华润阜阳中心项目五期总承包项目为研究对象,基于粒子群优化的卷积神经网络法对深基坑围护结构的水平位移和地表沉降进行预测,随着监测时间的增加,深基坑围护结构水平位移量和地表沉降量的预测值与实测值均具有一致的变化规律;与实测值相比,预测围护结构水平位移量的均方根误差为3.89%,平均百分比误差为5.92%,预测地表沉降量的均方根误差为4.53%,平均百分比误差为3.96%,均小于8%的误差限制要求,表明基于粒子群优化的卷积神经网络深基坑变形具有较高的预测精度。 展开更多
关键词 建筑工程 变形预测 卷积神经网络 粒子优化
下载PDF
基于量子自适应粒子群优化径向基函数神经网络的网络流量预测 被引量:33
9
作者 郭通 兰巨龙 +1 位作者 李玉峰 江逸茗 《电子与信息学报》 EI CSCD 北大核心 2013年第9期2220-2226,共7页
该文提出一种量子自适应粒子群优化算法,该算法中,粒子位置的编码采用量子比特实现,利用粒子飞行轨迹信息动态更新量子比特的状态,并引入量子非门实现变异操作以避免陷入局部最优。用该算法训练神经网络,实现了径向基函数(RBF)神经网络... 该文提出一种量子自适应粒子群优化算法,该算法中,粒子位置的编码采用量子比特实现,利用粒子飞行轨迹信息动态更新量子比特的状态,并引入量子非门实现变异操作以避免陷入局部最优。用该算法训练神经网络,实现了径向基函数(RBF)神经网络参数优化,建立了基于量子自适应粒子群优化RBF神经网络算法的网络流量预测模型。对真实网络流量的预测结果表明,该方法的收敛速度和预测精度均要优于传统RBF神经网络法、粒子群-RBF神经网络法、混合粒子群-RBF神经网络法和自适应粒子群-RBF神经网络法,并且预测效果不易受时间尺度变化的影响。 展开更多
关键词 径向函数神经网络 自适应粒子优化 量子比特 流量预测
下载PDF
基于粒子群优化BP神经网络的激光扫描投影系统畸变预测方法
10
作者 张宏韬 唐芳 +2 位作者 吴坤 朱亦然 侯茂盛 《光子学报》 EI CAS CSCD 北大核心 2024年第6期275-286,共12页
为了精准、高效地预测和校正激光扫描投影系统的畸变误差,研究了基于粒子群优化BP神经网络的畸变预测方法。建立了BP神经网络结构,并融合粒子群优化算法对BP神经网络的权值和阈值进行优化,得出基于粒子群优化BP神经网络的激光扫描投影... 为了精准、高效地预测和校正激光扫描投影系统的畸变误差,研究了基于粒子群优化BP神经网络的畸变预测方法。建立了BP神经网络结构,并融合粒子群优化算法对BP神经网络的权值和阈值进行优化,得出基于粒子群优化BP神经网络的激光扫描投影系统投影畸变预测模型。选取距激光扫描投影仪器两米的待投影面上的理论坐标点及各点相应畸变值Δx作为粒子群优化BP神经网络的训练数据集,将待投影面上实际投影位置坐标代入训练好的粒子群优化BP神经网络进行预测得到预测畸变值输出,并与实际畸变值对比,最后,引入Elman神经网络预测模型的预测结果与所研究预测方法进行对比。结果表明:在±30°的全视场扫描投影范围内粒子群优化BP神经网络预测模型的均方根误差为0.0176 mm,解算时间仅需22.4 s,相较于Elman神经网络效率提升78.33%,预测精度及时间明显优于Elman神经网络,可以有效预测激光扫描投影系统的畸变误差。 展开更多
关键词 激光扫描投影 粒子优化算法 BP神经网络 误差预测 二维振镜 图形畸变
下载PDF
基于径向基神经网络与粒子群算法的双叶片泵多目标优化 被引量:21
11
作者 王春林 胡蓓蓓 +1 位作者 冯一鸣 刘轲轲 《农业工程学报》 EI CAS CSCD 北大核心 2019年第2期25-32,共8页
针对双叶片泵存在水力性能比相同比转速的多叶片离心泵低的缺陷,该文以一台型号为80QW50-15-4的双叶片污水泵作为研究对象,将其设计流量点的扬程和效率定为优化目标,运用ANSYS CFX(computational fluid dynamics x)进行数值模拟获得性... 针对双叶片泵存在水力性能比相同比转速的多叶片离心泵低的缺陷,该文以一台型号为80QW50-15-4的双叶片污水泵作为研究对象,将其设计流量点的扬程和效率定为优化目标,运用ANSYS CFX(computational fluid dynamics x)进行数值模拟获得性能数据,采用径向基(radial basis function,RBF)神经网络建立结构参数与扬程、效率性能间的预测模型,并将其用作粒子群算法的适应值评价模型,在样本空间内进行最优值求解,获得扬程和效率的Pareto解。选取扬程最优个体和效率最优个体进行数值模拟,研究其在输运不同介质时的性能与内流场差异,并与初始模型的数值模拟数据相比较。经试验验证,清水介质中设计流量点扬程最优个体的扬程较初始个体增加0.96 m,增幅达到5.5%;效率最优个体的效率较初始个体提升了10.11个百分点。该优化方法改善了叶轮水力特性,使双叶片泵性能得到提高。 展开更多
关键词 算法 优化 数值模拟 径向神经网络
下载PDF
改进粒子群优化Takagi-Sugeno模糊径向基函数神经网络的非线性系统建模 被引量:3
12
作者 李丽娜 甘晓晔 +1 位作者 徐攀峰 马俊 《计算机应用》 CSCD 北大核心 2014年第5期1341-1344,1372,共5页
针对复杂非线性系统建模的难点问题,提出了一种基于改进的粒子群优化算法(PSO)优化的T-S模糊径向基函数(RBF)神经网络的新型系统建模算法。该算法将T-S模糊模型良好的可解释性及RBF神经网络的自学习能力相结合,构成T-S模糊RBF神经网络... 针对复杂非线性系统建模的难点问题,提出了一种基于改进的粒子群优化算法(PSO)优化的T-S模糊径向基函数(RBF)神经网络的新型系统建模算法。该算法将T-S模糊模型良好的可解释性及RBF神经网络的自学习能力相结合,构成T-S模糊RBF神经网络用于系统建模,并采用动态调整惯性权重的改进的PSO算法结合递推最小二乘算法实现网络参数的优化调整。首先,利用所提算法进行了非线性多维函数的逼近仿真,仿真结果均方差(MSE)为0.00017,绝对值误差不大于0.04,逼近精度较高;又将该算法用于建立动态流量软测量模型,并进行了相关的实验研究,动态流量测量结果平均绝对误差小于0.15 L/min,相对误差为1.97%,基本满足测量要求,并优于已有算法。上述仿真及实验研究结果表明,所提算法对于复杂非线性系统具有较高的建模精度和良好的自适应性。 展开更多
关键词 动态流量 软测量 T-S模糊模型 径向函数神经网络 粒子优化算法
下载PDF
基于自适应粒子群优化径向基函数神经网络的语音转换 被引量:8
13
作者 张玲华 姚绍芹 解伟超 《数据采集与处理》 CSCD 北大核心 2015年第2期336-343,共8页
语音转换是指在保持源说话人语义内容不变的前提下,通过改变源说话人的个性特征,使其听起来像目标说话人的语音。本文提出一种自适应粒子群优化算法训练径向基函数神经网络进行语音特征建模,以获取说话人谱包络的映射关系;此外,考虑到... 语音转换是指在保持源说话人语义内容不变的前提下,通过改变源说话人的个性特征,使其听起来像目标说话人的语音。本文提出一种自适应粒子群优化算法训练径向基函数神经网络进行语音特征建模,以获取说话人谱包络的映射关系;此外,考虑到说话人谱包络参数与基频有着密切的联系,利用基于径向基函数神经网络的联合谱包络基频变换方法,将谱包络参数与基频联合进行建模和转换,使得转换后的基频含有更多的说话人个性特征。最后,运用主、客观方法对获得的转换语音进行性能测试。实验表明,与主流的基于高斯混合模型的语音转换相比,使用自适应粒子群优化的径向基函数神经网络方法能够获得更好的转换性能,且更加适用于男声到女声的转换。 展开更多
关键词 语音转换 径向函数神经网络 自适应粒子优化 高斯混合模型
下载PDF
一种粒子群优化脉冲耦合神经网络的全色锐化算法
14
作者 赵志威 付昱凯 杨树文 《航天返回与遥感》 CSCD 北大核心 2024年第5期51-63,共13页
为了进一步降低多光谱与全色影像融合后的光谱和空间信息失真,提高融合质量,文章提出一种粒子群优化脉冲耦合神经网络的多光谱与全色影像融合算法。该算法基于主成分分析和非下采样剪切波搭建融合方法的基础融合框架,在低频系数融合过... 为了进一步降低多光谱与全色影像融合后的光谱和空间信息失真,提高融合质量,文章提出一种粒子群优化脉冲耦合神经网络的多光谱与全色影像融合算法。该算法基于主成分分析和非下采样剪切波搭建融合方法的基础融合框架,在低频系数融合过程中使用细节注射的融合方法,降低非必要的信息注射,从而提高光谱保持度。在融合高频系数时,采用参数自适应的简化脉冲耦合神经网络计算融合权重,并基于粒子群优化算法全局搜索能够获取最佳融合质量的对应参数,以提高空间信息的完整性和清晰度。文章通过三组实验验证提出算法的可行性,并与现有的、经典的融合算法进行对比,实验显示:文章提出的融合算法在三组实验中的光谱角映射均在0.1左右,通用图像质量指数在0.9以上。实验结果表明:该算法不仅能够有效提高全色与多光谱影像的融合质量,而且融合效果稳健,在对比实验中具有最佳的融合性能。 展开更多
关键词 全色与多光谱影像 遥感影像融合 脉冲耦合神经网络 粒子优化算法
下载PDF
基于径向基神经网络的尾门优化研究
15
作者 黄晖 陈为欢 熊伟 《机电信息》 2024年第20期71-73,77,共4页
某一新车尾门悬挂重达35 kg备胎,需满足下垂性能指标及轻量化需求,针对传统人工迭代优化周期长、难度大的问题,提出一种基于径向基神经网络(RBF)的尾门优化方法,首先将尾门结构参数和料厚定义为可优化设计变量,然后通过试验设计(DOE)生... 某一新车尾门悬挂重达35 kg备胎,需满足下垂性能指标及轻量化需求,针对传统人工迭代优化周期长、难度大的问题,提出一种基于径向基神经网络(RBF)的尾门优化方法,首先将尾门结构参数和料厚定义为可优化设计变量,然后通过试验设计(DOE)生成不同设计变量与车门下垂性能对应关系的多组数据,再基于RBF建立结构参数和性能的非线性映射,最后基于Isight的遗传算法对尾门参数进行优化。结果表明,优化方案尾门满足下垂下坠性能,并且减重1.0 kg(3.7%)。该研究对尾门优化设计有较大的工程参考价值。 展开更多
关键词 尾门 优化 径向神经网络 试验设计 遗传算法
下载PDF
基于粒子群优化神经网络的列检人员位置融合导航定位方法
16
作者 赵小军 《微型电脑应用》 2024年第5期196-200,共5页
列检场地较大,人员是否在安全区域内难以判断,为了实时、合理、精确地获得列检人员的位置信息,提出基于粒子群优化神经网络的列检人员位置融合导航定位方法。确定列检安全作业综合管理平台层级架构,将该平台作为导航算法实现基础,以惯... 列检场地较大,人员是否在安全区域内难以判断,为了实时、合理、精确地获得列检人员的位置信息,提出基于粒子群优化神经网络的列检人员位置融合导航定位方法。确定列检安全作业综合管理平台层级架构,将该平台作为导航算法实现基础,以惯性定向定位导航和全球导航卫星定位系统结合的方式,采集列检人员的初始位置、运动速度等信息,保证基本输入输出过程的针对性。分析粒子群优化过程,包括粒子初始化和种群评估,确定网络架构,选择激活函数,建立经典神经网络模型,保证融合导航过程的合理性。通过粒子群优化神经网络的方法提高网络搜索能力,避免陷入局部最优。将采集到的融合信息作为网络输入,设置连接权值和网络相关参数,根据适应度值,更新粒子速度与位置。当收敛精度满足要求时,输出导航定位结果。实验结果表明,该方法定位结果和实际位置的吻合度较高;仅需300次迭代即可实现算法收敛,训练误差基本保持在0.002以下。可以有效定位到列检人员的作业具体位置,提高了列检人员导航定位实时性。 展开更多
关键词 粒子优化 神经网络 列检人员 位置融合 导航定位
下载PDF
基于粒子群优化BP神经网络对保险杠的XRF光谱分类研究
17
作者 周贯旭 姜红 +1 位作者 周飞翔 满吉 《上海塑料》 CAS 2024年第2期60-64,共5页
建立了一种快速无损检验保险杠的分析方法。利用手持式X射线荧光光谱仪对50个保险杠样品进行了元素种类及含量的测量,根据K-means算法与轮廓系数、簇内误差平方和(SSE)的关系,确定最佳聚类数为5,即通过K-means聚类算法将50个样品分为5... 建立了一种快速无损检验保险杠的分析方法。利用手持式X射线荧光光谱仪对50个保险杠样品进行了元素种类及含量的测量,根据K-means算法与轮廓系数、簇内误差平方和(SSE)的关系,确定最佳聚类数为5,即通过K-means聚类算法将50个样品分为5类。运用随机森林(RF)算法对样品的X射线荧光(XRF)光谱数据进行特征提取。根据RF算法提取的不同特征变量组合建立反向传播神经网络(BPNN)和粒子群(PSO)优化的BPNN(PSO-BPNN),结果表明:当输入变量为Ca-Pb-Sr 3种元素变量时,BPNN和PSO-BPNN均具有较好的分类效果,分类准确率分别为94%和98%;PSO-BPNN模型更适合此类样品的XRF光谱数据;XRF与PSO-BPNN相结合可以对保险杠实现有效分类。该方法简单、快速且无损样品,可为保险杠类物证鉴定提供科学依据。 展开更多
关键词 X射线荧光光谱 保险杠 粒子优化算法 BP神经网络
下载PDF
基于粒子群算法优化BP神经网络的电力负荷预测
18
作者 赵家伟 刘文康 +1 位作者 张景楠 姚奕丞 《石河子科技》 2024年第3期29-31,共3页
准确的负荷预测是保证电网平稳运行的重要因素,本文提出了一种基于粒子群算法(PSO)优化BP神经网络预测模型的方法。该方法引入了粒子群算法这一新型的群智能算法,通过多次迭代进行模型优化,与BP神经网络相结合,消除了后者收敛速度较慢... 准确的负荷预测是保证电网平稳运行的重要因素,本文提出了一种基于粒子群算法(PSO)优化BP神经网络预测模型的方法。该方法引入了粒子群算法这一新型的群智能算法,通过多次迭代进行模型优化,与BP神经网络相结合,消除了后者收敛速度较慢、较易陷入局部极值等缺点。经MATLAB仿真结果验证,该模型具有较高的准确性和稳定性,为电力负荷预测提供了一种实用的方法。 展开更多
关键词 粒子算法 BP神经网络 负荷预测 模型优化
下载PDF
基于粒子群优化BP神经网络的电力通信网故障诊断
19
作者 孔汉辉 《山西电子技术》 2024年第5期36-39,共4页
为了提高电力通信网故障诊断结果的准确性,提出了一种基于粒子群优化BP神经网络的电力通信网故障诊断方法。采用PSO算法对BP神经网络进行优化,建立PSO-BPNN故障诊断模型,利用电力通信网测试系统产生的样本数据进行仿真分析,并与其他方... 为了提高电力通信网故障诊断结果的准确性,提出了一种基于粒子群优化BP神经网络的电力通信网故障诊断方法。采用PSO算法对BP神经网络进行优化,建立PSO-BPNN故障诊断模型,利用电力通信网测试系统产生的样本数据进行仿真分析,并与其他方法对比,结果表明,本文所提PSO-BPNN模型在诊断过程中只出现了2次误诊断,诊断结果的正确率高达97.22%,诊断效果更好,验证了所提方法的有效性和实用性。 展开更多
关键词 电力通信网 故障诊断 粒子优化算法 BP神经网络
下载PDF
基于粒子群优化BP神经网络的汽车4S店客户流失预警
20
作者 赵颖 秦睿 +1 位作者 林翠波 俸亚特 《时代汽车》 2024年第11期142-145,共4页
客户流失预警作为防止汽车4S店客户流失的重要手段,不仅为当代车企提供了有效的经济效益保证,也为车企对未来决策带来了新的研究依据。为建立汽车4S店客户流失预警分级标准,该文从客户基本信息、车龄、车辆销售价格、贷款金额、维修保... 客户流失预警作为防止汽车4S店客户流失的重要手段,不仅为当代车企提供了有效的经济效益保证,也为车企对未来决策带来了新的研究依据。为建立汽车4S店客户流失预警分级标准,该文从客户基本信息、车龄、车辆销售价格、贷款金额、维修保养次数、维修保养时间等29个指标着手,基于粒子群优化BP神经网络算法,建立汽车4S店客户流失预警分级标准模型。该模型首先预测出客户流失概率,然后根据值为0-1之间的概率大小分为1-5共5个等级,其中1表流失可能性很小,5表示流失可能性很大。最终得到测试集客户流失预警从1到5等级的比例分别为71.39%、3.75%、3.50%、5.86%和15.50%。同时,通过训练集中有78.65%的客户未流失作为先验概率,判定预测概率小于等于先验概率为客户未流失,大于先验概率为客户流失,得到该模型总体的准确率为91.71%。 展开更多
关键词 粒子优化算法 BP神经网络 客户流失预警 分级标准 主成分分析
下载PDF
上一页 1 2 95 下一页 到第
使用帮助 返回顶部