This paper proposes an efficient method for optimal power flow solution (OPF) using particle swarm optimization (PSO) technique. The objective of the proposed method is to find the steady state operation point in ...This paper proposes an efficient method for optimal power flow solution (OPF) using particle swarm optimization (PSO) technique. The objective of the proposed method is to find the steady state operation point in a power system which minimizes the fuel cost, while maintaining an acceptable system performance in terms of limits on generator power, line flow limits and voltage limits. In order to improvise the performance of the conventional PSO (cPSO), the fine tuning parameters- the inertia weight and acceleration coefficients are formulated in terms of global-local best values of the objective function. These global-local best inertia weight (GLBestlW) and global-local best acceleration coefficient (GLBestAC) are incorporated into PSO in order to compute the optimal power flow solution. The proposed method has been tested on the standard IEEE 30 bus test system to prove its efficacy. The results are compared with those obtained through cPSO. It is observed that the proposed algorithm is computationally faster, in terms of the number of load flows executed and provides better results than the conventional heuristic techniques.展开更多
Semiarid loess hilly areas in China are enduring a series of environmental conflicts between urban expansion,cultivated land conservation,soil erosion and water shortage,and require land use allocation to reconcile th...Semiarid loess hilly areas in China are enduring a series of environmental conflicts between urban expansion,cultivated land conservation,soil erosion and water shortage,and require land use allocation to reconcile these environmental conflicts.We argue that the optimized spatial allocation of rural land use can be achieved by a Particle Swarm Optimization (PSO) model in conjunction with multi-objective optimization techniques.Our study focuses on Yuzhong County of Gangsu Province in China,a typical catchment on the Loess Plateau,and proposes a land use spatial optimization model.The model maximizes land use suitability and spatial compactness based on a variety of constraints,e.g.optimal land use structure and restrictive areas,and employs an improved PSO algorithm equipped with a determinant initialization method and a dynamic weighted aggregation (DWA) method to obtain the optimized land use spatial pattern.The results suggest that (1) approximately 4% of land use should be reallocated and these changes would alleviate the environmental conflicts in the study area;(2) the major reshuffling is slope farmland and newly added construction and cultivated land,whereas the unchanged areas are largely forests and basic farmland;and (3) the PSO is capable of optimizing rural land use allocation,and the determinant initialization method and DWA can improve the performance of the PSO.展开更多
文摘This paper proposes an efficient method for optimal power flow solution (OPF) using particle swarm optimization (PSO) technique. The objective of the proposed method is to find the steady state operation point in a power system which minimizes the fuel cost, while maintaining an acceptable system performance in terms of limits on generator power, line flow limits and voltage limits. In order to improvise the performance of the conventional PSO (cPSO), the fine tuning parameters- the inertia weight and acceleration coefficients are formulated in terms of global-local best values of the objective function. These global-local best inertia weight (GLBestlW) and global-local best acceleration coefficient (GLBestAC) are incorporated into PSO in order to compute the optimal power flow solution. The proposed method has been tested on the standard IEEE 30 bus test system to prove its efficacy. The results are compared with those obtained through cPSO. It is observed that the proposed algorithm is computationally faster, in terms of the number of load flows executed and provides better results than the conventional heuristic techniques.
基金supported in part by the National High-Tech Research & Development Program of China (Grant No.2011AA120304)National Key Technology R&D Program of China(Grant Nos. 2011BAB01B06 and 2006BAB05B06)
文摘Semiarid loess hilly areas in China are enduring a series of environmental conflicts between urban expansion,cultivated land conservation,soil erosion and water shortage,and require land use allocation to reconcile these environmental conflicts.We argue that the optimized spatial allocation of rural land use can be achieved by a Particle Swarm Optimization (PSO) model in conjunction with multi-objective optimization techniques.Our study focuses on Yuzhong County of Gangsu Province in China,a typical catchment on the Loess Plateau,and proposes a land use spatial optimization model.The model maximizes land use suitability and spatial compactness based on a variety of constraints,e.g.optimal land use structure and restrictive areas,and employs an improved PSO algorithm equipped with a determinant initialization method and a dynamic weighted aggregation (DWA) method to obtain the optimized land use spatial pattern.The results suggest that (1) approximately 4% of land use should be reallocated and these changes would alleviate the environmental conflicts in the study area;(2) the major reshuffling is slope farmland and newly added construction and cultivated land,whereas the unchanged areas are largely forests and basic farmland;and (3) the PSO is capable of optimizing rural land use allocation,and the determinant initialization method and DWA can improve the performance of the PSO.