期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于粒子群优化技术PSO确定TCSC最佳安装位置
1
作者 戴文进 吴敏 《电力科学与工程》 2007年第1期19-22,共4页
提出一种采用粒子群优化技术,以系统载荷能力最大化及安装费用最小化为目标,确定TCSC最佳安装位置的方法。该方法的数学模型以线路潮流和节点电压限制作为约束条件,从而提高了结果的准确性和实用性。最后在IEEE 6节点系统中成功地应用... 提出一种采用粒子群优化技术,以系统载荷能力最大化及安装费用最小化为目标,确定TCSC最佳安装位置的方法。该方法的数学模型以线路潮流和节点电压限制作为约束条件,从而提高了结果的准确性和实用性。最后在IEEE 6节点系统中成功地应用该方法。结果表明,PSO算法求得的系统最大载荷能力较原状态提高了14%,并且与遗传算法GA相比,其具有较强的全局搜索能力和较高的收敛精度,是寻找TCSC最佳安装位置的有效方法。 展开更多
关键词 粒子群优化技术 TCSC 最佳安装位置
下载PDF
一种新的机床电力系统的分散自适应递推控制方法 被引量:1
2
作者 栾居里 《制造业自动化》 北大核心 2011年第5期127-128,131,共3页
本文提出了一种分散自适应递推励磁控制器,采用粒子群优化技术进行调谐,能够提高多机组电力系统的稳定性。为了达到分散化,每台机床被视为一个独立的不确定的动态子系统,在这里,不确定性是一种微扰,它代表其余的系统对这个特别的机床的... 本文提出了一种分散自适应递推励磁控制器,采用粒子群优化技术进行调谐,能够提高多机组电力系统的稳定性。为了达到分散化,每台机床被视为一个独立的不确定的动态子系统,在这里,不确定性是一种微扰,它代表其余的系统对这个特别的机床的扰动。该扰动可以表示成电力系统偏差的多元函数,其参数可由粒子群优化技术获得。该技术可以用双区基准电力系统来解释。该系统显示了在严格的偶然事件中采用分散自适应控制器能够使主面的波动有效地衰减下去,而这恰恰是传统的电力系统稳定器所不能做到的。 展开更多
关键词 电力系统 自适应 递推控制 励磁控制器 粒子群优化技术
下载PDF
Optimal Power Flow Solution Using Particle Swarm Optimization Technique with Global-Local Best Parameters 被引量:4
3
作者 P. Umapathy C. Venkatasehsiah M. Senthil Arumugam 《Journal of Energy and Power Engineering》 2010年第2期46-51,共6页
This paper proposes an efficient method for optimal power flow solution (OPF) using particle swarm optimization (PSO) technique. The objective of the proposed method is to find the steady state operation point in ... This paper proposes an efficient method for optimal power flow solution (OPF) using particle swarm optimization (PSO) technique. The objective of the proposed method is to find the steady state operation point in a power system which minimizes the fuel cost, while maintaining an acceptable system performance in terms of limits on generator power, line flow limits and voltage limits. In order to improvise the performance of the conventional PSO (cPSO), the fine tuning parameters- the inertia weight and acceleration coefficients are formulated in terms of global-local best values of the objective function. These global-local best inertia weight (GLBestlW) and global-local best acceleration coefficient (GLBestAC) are incorporated into PSO in order to compute the optimal power flow solution. The proposed method has been tested on the standard IEEE 30 bus test system to prove its efficacy. The results are compared with those obtained through cPSO. It is observed that the proposed algorithm is computationally faster, in terms of the number of load flows executed and provides better results than the conventional heuristic techniques. 展开更多
关键词 Particle swarm optimization swarm intelligence optimal power flow solution inertia weight acceleration coefficient.
下载PDF
一种基于矩阵分解技术和考虑社交网络的推荐策略 被引量:5
4
作者 管水城 申贵成 《图书馆学研究》 CSSCI 北大核心 2018年第14期31-37,共7页
随着社会潮流趋势的演进,如何更好地满足个性化需求已成为个性化推荐服务研究领域的新趋势,推荐系统对帮助用户在海量的线上异构数据中快速发现其感兴趣的内容具有广泛的应用。为了在复杂场景中有效缓解推荐系统研究领域普遍存在的数据... 随着社会潮流趋势的演进,如何更好地满足个性化需求已成为个性化推荐服务研究领域的新趋势,推荐系统对帮助用户在海量的线上异构数据中快速发现其感兴趣的内容具有广泛的应用。为了在复杂场景中有效缓解推荐系统研究领域普遍存在的数据稀疏和冷启动等问题,同时在复杂环境下提高其推荐项目的准确性和多样性,提出一种在矩阵分解技术的基础上同时考虑社交网络推荐的新方法。首先,通过将粒子群优化技术(PSO)与K-harmonic means(KHM)聚类算法融合,设计了一种混合聚类算法并对用户进行聚类,然后在相似度计算模型中引入多因素,利用矩阵分解技术计算用户的行为偏好,最终获取用户的最佳项目推荐列表方案。研究对Book-Crossing书评基准数据集进行仿真分析,结果表明提出的新方法具有较好的推荐准确性和多样性。 展开更多
关键词 K-harmonic MEANS 聚类粒子群优化技术 矩阵分解技术 社交网络推荐策略
原文传递
Rural land use spatial allocation in the semiarid loess hilly area in China:Using a Particle Swarm Optimization model equipped with multi-objective optimization techniques 被引量:24
5
作者 LIU YaoLin LIU DianFeng +4 位作者 LIU YanFang HE JianHua JIAO LiMin CHEN YiYun HONG XiaoFeng 《Science China Earth Sciences》 SCIE EI CAS 2012年第7期1166-1177,共12页
Semiarid loess hilly areas in China are enduring a series of environmental conflicts between urban expansion,cultivated land conservation,soil erosion and water shortage,and require land use allocation to reconcile th... Semiarid loess hilly areas in China are enduring a series of environmental conflicts between urban expansion,cultivated land conservation,soil erosion and water shortage,and require land use allocation to reconcile these environmental conflicts.We argue that the optimized spatial allocation of rural land use can be achieved by a Particle Swarm Optimization (PSO) model in conjunction with multi-objective optimization techniques.Our study focuses on Yuzhong County of Gangsu Province in China,a typical catchment on the Loess Plateau,and proposes a land use spatial optimization model.The model maximizes land use suitability and spatial compactness based on a variety of constraints,e.g.optimal land use structure and restrictive areas,and employs an improved PSO algorithm equipped with a determinant initialization method and a dynamic weighted aggregation (DWA) method to obtain the optimized land use spatial pattern.The results suggest that (1) approximately 4% of land use should be reallocated and these changes would alleviate the environmental conflicts in the study area;(2) the major reshuffling is slope farmland and newly added construction and cultivated land,whereas the unchanged areas are largely forests and basic farmland;and (3) the PSO is capable of optimizing rural land use allocation,and the determinant initialization method and DWA can improve the performance of the PSO. 展开更多
关键词 spatial allocation rural land use particle swarm optimization multi-objective optimization Loess Plateau
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部