期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
基于PSOFS和TSK模糊系统的不平衡心电数据分类算法
1
作者
李鑫辉
申情
张雄涛
《大数据》
2022年第5期139-152,共14页
提出基于粒子群优化特征选择(PSOFS)算法和TSK(Takagi-Sugeno-Kang)模糊系统的心电信号分类模型,即基于PSOFS和TSK的并行集成模糊神经网络(PE-PT-FN),用于心电图预测。首先对训练集中的各类样本进行随机放回抽样,然后将抽样得到的样本...
提出基于粒子群优化特征选择(PSOFS)算法和TSK(Takagi-Sugeno-Kang)模糊系统的心电信号分类模型,即基于PSOFS和TSK的并行集成模糊神经网络(PE-PT-FN),用于心电图预测。首先对训练集中的各类样本进行随机放回抽样,然后将抽样得到的样本合并在一起,再独立且并行地通过PSOFS算法进行特征选择。PSOFS算法中不同的位置表示不同的特征子集,初始位置随机的粒子经过多次迭代收敛至最佳位置。每个子集得到一个特征子集用于并行训练多组独立的小型TSK模糊神经网络(TSK-FNN)。模糊系统的可解释性和PSOFS算法挑选出来的特征子集能有效地帮助医学研究者找出心电信号数据与不同类型病例之间的关联。实验证明,PE-PT-FN在保留可解释性的前提下,能将预测结果的宏召回率提升至92.35%。
展开更多
关键词
TSK模糊神经网络
粒子群优化特征选择
集成学习
心电信号分类
不平衡数据
下载PDF
职称材料
题名
基于PSOFS和TSK模糊系统的不平衡心电数据分类算法
1
作者
李鑫辉
申情
张雄涛
机构
湖州师范学院信息工程学院
浙江省现代农业资源智慧管理与应用研究重点实验室
湖州学院理工学院
出处
《大数据》
2022年第5期139-152,共14页
基金
国家自然科学基金资助项目(No.61771193,No.61802123)
浙江省教育厅一般科研项目(No.Y202146028)。
文摘
提出基于粒子群优化特征选择(PSOFS)算法和TSK(Takagi-Sugeno-Kang)模糊系统的心电信号分类模型,即基于PSOFS和TSK的并行集成模糊神经网络(PE-PT-FN),用于心电图预测。首先对训练集中的各类样本进行随机放回抽样,然后将抽样得到的样本合并在一起,再独立且并行地通过PSOFS算法进行特征选择。PSOFS算法中不同的位置表示不同的特征子集,初始位置随机的粒子经过多次迭代收敛至最佳位置。每个子集得到一个特征子集用于并行训练多组独立的小型TSK模糊神经网络(TSK-FNN)。模糊系统的可解释性和PSOFS算法挑选出来的特征子集能有效地帮助医学研究者找出心电信号数据与不同类型病例之间的关联。实验证明,PE-PT-FN在保留可解释性的前提下,能将预测结果的宏召回率提升至92.35%。
关键词
TSK模糊神经网络
粒子群优化特征选择
集成学习
心电信号分类
不平衡数据
Keywords
TSK fuzzy neural network
particle swarm optimization feature selection
ensemble learning
classification of ECG signal
imbalance data
分类号
TP301 [自动化与计算机技术—计算机系统结构]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
基于PSOFS和TSK模糊系统的不平衡心电数据分类算法
李鑫辉
申情
张雄涛
《大数据》
2022
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部