期刊文献+
共找到1,308篇文章
< 1 2 66 >
每页显示 20 50 100
基于自适应混合粒子群算法优化支持向量机的乳腺癌预测
1
作者 王勇 吴慕云 《阜阳职业技术学院学报》 2024年第2期67-70,共4页
使用粒子群算法优化支持向量机的惩罚因子和核参数,提高分类的精度。粒子群算法收敛速度快,但是容易陷入局部最优。引入鲸鱼算法的包围运动和螺旋运动机制,形成参数自适应的混合粒子群优化算法,提升了算法的精度。在对数据进行预处理之... 使用粒子群算法优化支持向量机的惩罚因子和核参数,提高分类的精度。粒子群算法收敛速度快,但是容易陷入局部最优。引入鲸鱼算法的包围运动和螺旋运动机制,形成参数自适应的混合粒子群优化算法,提升了算法的精度。在对数据进行预处理之后,80%的数据用于模型的训练,剩余20%用于模型的测试。每次实验分别按照比例随机生成的训练集和测试集进行20次预测,计算平均正确率。实验表明,自适应混合粒子群算法优化精度高于标准粒子群算法和鲸鱼算法。 展开更多
关键词 乳腺癌 支持向量 自适应 粒子优化算法
下载PDF
基于粒子群优化支持向量机的纱线质量预测 被引量:1
2
作者 章军辉 陈明亮 +2 位作者 郭晓满 付宗杰 王静贤 《棉纺织技术》 CAS 2024年第4期16-22,共7页
针对复杂纺纱过程中成纱质量预测精度不足以及深度学习对庞大数据集依赖性的缺陷,提出一种基于粒子群算法优化支持向量机的小样本成纱质量预测方法。首先,对原始数据集样本序列进行灰色关联预处理,按照关联度大小进行排序,再结合先验知... 针对复杂纺纱过程中成纱质量预测精度不足以及深度学习对庞大数据集依赖性的缺陷,提出一种基于粒子群算法优化支持向量机的小样本成纱质量预测方法。首先,对原始数据集样本序列进行灰色关联预处理,按照关联度大小进行排序,再结合先验知识库筛选出主要的原棉纤维指标;其次,针对小样本预测问题,建立了线性核、多项式核、高斯核以及自适应带宽RBF核等不同核函数支持向量回归(SVR)预测模型;最后,采用粒子群优化(PSO)算法对高斯核SVR模型的超参数(正则化系数和带宽调节参数)进行辨识,设计一种综合适应度函数与线性递减惯性权重策略,用以提高PSO算法的寻优能力。仿真结果表明:PSO优化高斯核SVR模型对不同成纱质量指标有较好的预测效果,其平均相对误差不超过2%。认为:PSO优化高斯核SVR模型对成纱质量指标的预测误差较低,具有良好的适应性。 展开更多
关键词 支持向量 粒子优化 灰色关联 纱线质量预测 核函数
下载PDF
基于组合核相关向量机和量子粒子群优化算法的变压器故障诊断方法 被引量:9
3
作者 付华 任仁 +1 位作者 闫智生 马云伍 《高压电器》 CAS CSCD 北大核心 2017年第10期131-135,141,共6页
为了提高变压器故障诊断精确度,提出量子粒子群算法(QPSO)优化相关向量机(RVM)的变压器故障诊断方法。采用4个二分类RVM来实现变压器故障诊断的多分类问题。相关向量机的组合核函数可融合变压器运行状态的多种特征信息,为非线性、有限... 为了提高变压器故障诊断精确度,提出量子粒子群算法(QPSO)优化相关向量机(RVM)的变压器故障诊断方法。采用4个二分类RVM来实现变压器故障诊断的多分类问题。相关向量机的组合核函数可融合变压器运行状态的多种特征信息,为非线性、有限样本数据的变压器故障诊断建模问题提供有效的方法。利用量子粒子群算法对RVM诊断模型参数快速寻优,并结合CV原理设置适应度函数可有效提高诊断模型的泛化能力。实例分析表明,该耦合算法诊断正确率为91.1%,优于三比值法、BPNN、PSO-SVM方法,可有效提高变压器故障诊断精度。 展开更多
关键词 变压器 故障诊断 量子粒子优化 相关向量 组合核函数
下载PDF
基于粒子群优化相关向量机的网络入侵检测 被引量:12
4
作者 吴良海 《微电子学与计算机》 CSCD 北大核心 2010年第5期181-184,共4页
构建计算机网络的入侵检测系统,对于保护网络中的信息免受各种攻击显得非常重要.为了克服支持向量机的缺点,提出了一种基于粒子群优化相关向量机(RVM)网络入侵检测方法.相关向量机是一种建立在支持向量机上的稀疏概率模型.与支持向量机... 构建计算机网络的入侵检测系统,对于保护网络中的信息免受各种攻击显得非常重要.为了克服支持向量机的缺点,提出了一种基于粒子群优化相关向量机(RVM)网络入侵检测方法.相关向量机是一种建立在支持向量机上的稀疏概率模型.与支持向量机相比,它不仅具有较高检测精度,还具有较好的实时性,粒子群优化算法用于确定相关向量机的核参数.最后结合试验将提出的方法同支持向量机算法、BP神经网络进行了比较,结果表明提出的相关向量机相比于支持向量机、BP神经网络有着更高的入侵精度. 展开更多
关键词 相关向量 网络异常 入侵检测 粒子
下载PDF
基于粒子群优化算法的相关向量机边坡稳定性分析模型 被引量:5
5
作者 张研 付闵洁 +2 位作者 王鹏鹏 梁剑明 郭道静 《科学技术与工程》 北大核心 2023年第19期8370-8376,共7页
为快速获取边坡稳定性系数,及时对边坡进行稳定性评价,提出一种基于粒子群优化算法(particle swarm optimization,PSO)的相关向量机(relevance vector machine,RVM)边坡稳定性分析模型。该模型通过选取影响边坡稳定性安全系数的6个主要... 为快速获取边坡稳定性系数,及时对边坡进行稳定性评价,提出一种基于粒子群优化算法(particle swarm optimization,PSO)的相关向量机(relevance vector machine,RVM)边坡稳定性分析模型。该模型通过选取影响边坡稳定性安全系数的6个主要因素,并对这6个主要影响因素产生的30组数据进行拟合训练,利用粒子群算法对相关向量机模型参数进行优化,选取最优参数值,根据这30组训练样本来对剩余4组样本进行精准预测。结果表明:与实际值进行对比,基于PSO-RVM模型预测的平均相对误差仅为5.64%,且建立的PSO-RVM预测模型的边坡稳定性安全系数的平均相对误差均明显优于利用BP(back propogation)神经网络和协调粒子群(coordinated particle swarm optimization,CPSO)-BP模型预测得到的平均相对误差,进一步为边坡稳定性预测及评价提供一种新方法。 展开更多
关键词 粒子优化 相关向量 边坡稳定性 分析模型
下载PDF
基于粒子群优化支持向量机的地下洞室支护设计
6
作者 侯德俊 梁熙文 +1 位作者 张昊辰 韩君格 《西北水电》 2024年第3期101-107,共7页
水电站地下洞室支护设计因其环境复杂性而面临重大挑战,现有方案受限于主观经验和低精度等问题,难以满足设计需求。为提高地下洞室设计效率和可靠性,通过引入粒子群优化(PSO)优化支持向量机(SVM)参数,开发地下洞室支护智能设计模型。模... 水电站地下洞室支护设计因其环境复杂性而面临重大挑战,现有方案受限于主观经验和低精度等问题,难以满足设计需求。为提高地下洞室设计效率和可靠性,通过引入粒子群优化(PSO)优化支持向量机(SVM)参数,开发地下洞室支护智能设计模型。模型将洞室跨度、洞室高度、洞室高跨比、洞室埋深、围岩类别、岩石饱和单轴抗压强度、最大主应力值、岩石强度应力比作为输入指标。通过对100个国内外水电站地下洞室支护案例的训练测试。结果表明:该模型在各项输出指标上显示了高度准确性,其中喷混厚度、锚杆直径、锚杆间排距的定类准确率分别达到90%、85%、90%,锚杆长度的定量预测拟合优度为0.843。研究成果可为地下洞室支护设计提供一种新方法。 展开更多
关键词 地下洞室 支护设计 粒子优化 支持向量
下载PDF
基于粒子群优化相关向量机的无线传感器故障检测 被引量:1
7
作者 吴良海 《制造业自动化》 北大核心 2010年第11期31-32,43,共3页
及时准确地对无线传感器节点进行故障检测对于确保整个无线传感器网络有着非常重要意义。为了克服支持向量机的缺点,本文提出了一种基于粒子群优化相关向量机(RVM)无线传感器故障检测方法。相关向量机是一种建立在支持向量机上的稀疏概... 及时准确地对无线传感器节点进行故障检测对于确保整个无线传感器网络有着非常重要意义。为了克服支持向量机的缺点,本文提出了一种基于粒子群优化相关向量机(RVM)无线传感器故障检测方法。相关向量机是一种建立在支持向量机上的稀疏概率模型。与支持向量机相比,它不仅具有较高检测精度,还具有较好的实时性,粒子群优化算法用于确定相关向量机的核参数。最后结合试验将本文提出的方法同支持向量机算法、BP神经网络进行了比较,结果表明,在无线传感器故障检测中本文提出的相关向量机相比于支持向量机、BP神经网络有着更高的入侵精度。 展开更多
关键词 传感器 相关向量 故障检测 粒子
下载PDF
基于粒子群优化和最小二乘支持向量机的储罐腐蚀速率预测
8
作者 王明慧 党鹏飞 +1 位作者 杨铮鑫 龚博 《腐蚀与防护》 CAS CSCD 北大核心 2024年第8期71-76,共6页
利用粒子群优化(PSO)算法的全局寻优能力,对最小二乘支持向量机(LSSVM)的正则化参数和核参数进行优化,提出了基于PSO-LSSVM的大型储罐腐蚀速率的预测方法。采用该方法对储罐腐蚀速率进行预测,并利用实测数据对模型的预测精度进行验证。... 利用粒子群优化(PSO)算法的全局寻优能力,对最小二乘支持向量机(LSSVM)的正则化参数和核参数进行优化,提出了基于PSO-LSSVM的大型储罐腐蚀速率的预测方法。采用该方法对储罐腐蚀速率进行预测,并利用实测数据对模型的预测精度进行验证。结果表明:使用PSOLSSVM获得的腐蚀速率预测结果与实际腐蚀速率较为吻合,罐顶、第一层罐壁、罐底预测结果的平均绝对百分误差分别为2.265%、3.077%、1.18%,均方根误差分别为0.010%、0.012%、0.011%,决定系数分别为0.973、0.982、0.976。该方法可以对储罐内腐蚀速率进行有效的预测。 展开更多
关键词 粒子优化(PSO) 最小二乘支持向量(LSSVM) 腐蚀速率预测
下载PDF
量子粒子群算法优化相关向量机的轴承故障诊断 被引量:14
9
作者 吕维宗 王海瑞 舒捷 《计算机应用与软件》 北大核心 2019年第1期6-11,16,共7页
人为因素对传统滚动轴承故障诊断方法有比较大的影响,并且故障起因比较复杂。针对此问题提出用基于量子粒子群(QPSO)算法优化的相关向量机(RVM)进行滚动轴承故障诊断。采用总体平均经验模态分解(EEMD)方法来处理滚动轴承的振动信号,分... 人为因素对传统滚动轴承故障诊断方法有比较大的影响,并且故障起因比较复杂。针对此问题提出用基于量子粒子群(QPSO)算法优化的相关向量机(RVM)进行滚动轴承故障诊断。采用总体平均经验模态分解(EEMD)方法来处理滚动轴承的振动信号,分解后可以得到很多内禀模态函数(IMF)。再把IMF能量作为特征向量输入到QPSA-RVM诊断器中对滚动轴承的故障进行准确诊断。实验结果显示:该模型可以更快地实现对滚动轴承故障的准确识别,证明了该模型的稳定性及高效性。与支持向量机(SVM)分析对比后,进一步体现出RVM方法在智能故障诊断领域中具有优势。 展开更多
关键词 量子粒子算法 故障诊断 相关向量 EEMD
下载PDF
基于混沌粒子群改进支持向量机对露天矿边坡稳定性的分类预测
10
作者 赵国彦 邹景煜 王猛 《矿冶工程》 CAS 北大核心 2024年第2期8-12,共5页
为了简便有效地评估边坡稳定性状态,针对目前传统机器学习的算法选择与超参数优化等难题,提出了基于混沌粒子群优化算法的4种机器学习模型,并对其预测性能进行了对比。建立了包含221组露天矿边坡稳定性案例的数据库,其中80%的数据用于训... 为了简便有效地评估边坡稳定性状态,针对目前传统机器学习的算法选择与超参数优化等难题,提出了基于混沌粒子群优化算法的4种机器学习模型,并对其预测性能进行了对比。建立了包含221组露天矿边坡稳定性案例的数据库,其中80%的数据用于训练,20%的数据用于模型测试。4种模型预测结果及工程实例验证结果表明,基于混沌粒子群改进支持向量机模型的预测效果上总体优于其他3种机器学习模型,预测准确率88%,能够有效预测边坡稳定性,可为露天矿边坡安全提供可靠的预测结果。 展开更多
关键词 边坡稳定性 混沌粒子优化 支持向量 预测
下载PDF
基于多分类最小二乘支持向量机和改进粒子群优化算法的电力变压器故障诊断方法 被引量:123
11
作者 郑含博 王伟 +3 位作者 李晓纲 王立楠 李予全 韩金华 《高电压技术》 EI CAS CSCD 北大核心 2014年第11期3424-3429,共6页
为了提高故障诊断的准确率,提出了一种多分类最小二乘支持向量机(LS-SVM)和改进粒子群优化(PSO)相结合的电力变压器故障诊断方法。引入最小输出编码构造多个2分类LS-SVM,实现了变压器诊断的多类分类。利用PSO算法获得LS-SVM诊断模型的... 为了提高故障诊断的准确率,提出了一种多分类最小二乘支持向量机(LS-SVM)和改进粒子群优化(PSO)相结合的电力变压器故障诊断方法。引入最小输出编码构造多个2分类LS-SVM,实现了变压器诊断的多类分类。利用PSO算法获得LS-SVM诊断模型的最优参数,并采用交叉验证原理来提高分类算法的整体泛化性能。实例分析结果表明,采用LS-SVM和PSO算法可以准确、有效地对变压器进行故障诊断;与传统的电力变压器故障诊断方法相比,该方法的诊断准确率更高。 展开更多
关键词 最小二乘支持向量 多类分类 粒子优化 故障诊断 电力变压器 准确率
下载PDF
基于粒子群优化算法的支持向量机参数选择及其应用 被引量:128
12
作者 邵信光 杨慧中 陈刚 《控制理论与应用》 EI CAS CSCD 北大核心 2006年第5期740-743,748,共5页
参数选择是支持向量机(SVM)研究领域的重要问题,它的本质是一个优化搜索过程,考虑到进化算法在求解优化问题上的有效性,提出了以最小化k-fold交叉验证误差为目标.粒子群优化(PSO)算法为寻优技巧的SVM参数调整方法.通过仿真例子验证该... 参数选择是支持向量机(SVM)研究领域的重要问题,它的本质是一个优化搜索过程,考虑到进化算法在求解优化问题上的有效性,提出了以最小化k-fold交叉验证误差为目标.粒子群优化(PSO)算法为寻优技巧的SVM参数调整方法.通过仿真例子验证该方法的有效性后,用其建立了聚丙烯腈生产过程中数均分子量的软测量模型,结果表明该方法有效. 展开更多
关键词 支持向量 参数选择 粒子优化 聚丙烯腈 软测量
下载PDF
一种自主核优化的二值粒子群优化–多核学习支持向量机变压器故障诊断方法 被引量:24
13
作者 尹玉娟 王媚 +3 位作者 张金江 袁鹏 詹俊鹏 郭创新 《电网技术》 EI CSCD 北大核心 2012年第7期249-254,共6页
支持向量机(support vector machine,SVM)对于核函数及模型参数十分敏感,多核学习可降低模型的参数敏感性。提出了基于二值粒子群优化(binary particle swarmoptimization,BPSO)的多核学习SVM分类方法(BPSO-MKSVC)进行变压器故障诊断。... 支持向量机(support vector machine,SVM)对于核函数及模型参数十分敏感,多核学习可降低模型的参数敏感性。提出了基于二值粒子群优化(binary particle swarmoptimization,BPSO)的多核学习SVM分类方法(BPSO-MKSVC)进行变压器故障诊断。多核学习支持向量机(multi-kernel support vector classifier,MKSVC)采用由多个基核线性组合的多核进行学习,其中每一个基核完成从特定样本空间提取故障特征,通过多面故障特征的线性组合,将学习分类问题转化为相应的凸规划问题进行迭代求解。采用BPSO优化算法对MKSVC中的基核数及模型参数进行优化,实现了参数的自主选择。与常用诊断算法相比,BPSO-MKSVC具有更高的诊断精度;与PSO优化的SVM方法相比,其具有更低的参数敏感性和更好的鲁棒性。 展开更多
关键词 溶解气体分析 支持向量 多核学习 二值粒子优化 故障诊断 变压器
下载PDF
基于粗糙集和粒子群优化支持向量机的滑坡变形预测 被引量:28
14
作者 赵艳南 牛瑞卿 +1 位作者 彭令 程温鸣 《中南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2015年第6期2324-2332,共9页
以三峡库区白水河滑坡为例,首先分析降雨量与库水位等影响因素与滑坡变形特征的响应关系,然后利用粗糙集理论对10个初始影响因子进行属性约减,筛选出影响滑坡变形的核因子集,最后基于该因子集建立粒子群优化支持向量回归模型,对滑坡位... 以三峡库区白水河滑坡为例,首先分析降雨量与库水位等影响因素与滑坡变形特征的响应关系,然后利用粗糙集理论对10个初始影响因子进行属性约减,筛选出影响滑坡变形的核因子集,最后基于该因子集建立粒子群优化支持向量回归模型,对滑坡位移速率进行预测。研究结果表明:测试样本的预测结果与实测值变化趋势基本一致,其平均绝对误差为0.234 mm/d,均方差和判定系数分别为0.163和0.520。粗糙集理论在分析滑坡变形特征、筛选关键因子方面的适用性与科学性,构建的粗糙集-粒子群优化支持向量机模型具有较高的泛化能力,是一种有效的滑坡变形预测方法。 展开更多
关键词 滑坡变形预测 粗糙集 粒子优化 支持向量
下载PDF
改进的基于粒子群优化的支持向量机特征选择和参数联合优化算法 被引量:38
15
作者 张进 丁胜 李波 《计算机应用》 CSCD 北大核心 2016年第5期1330-1335,共6页
针对支持向量机(SVM)中特征选择和参数优化对分类精度有较大影响,提出了一种改进的基于粒子群优化(PSO)的SVM特征选择和参数联合优化算法(GPSO-SVM),使算法在提高分类精度的同时选取尽可能少的特征数目。为了解决传统粒子群算法... 针对支持向量机(SVM)中特征选择和参数优化对分类精度有较大影响,提出了一种改进的基于粒子群优化(PSO)的SVM特征选择和参数联合优化算法(GPSO-SVM),使算法在提高分类精度的同时选取尽可能少的特征数目。为了解决传统粒子群算法在进行优化时易出现陷入局部最优和早熟的问题,该算法在PSO中引入遗传算法(GA)中的交叉变异算子,使粒子在每次迭代更新后进行交叉变异操作来避免这一问题。该算法通过粒子之间的不相关性指数来决定粒子之间的交叉配对,由粒子适应度值的大小决定其变异概率的大小,由此产生新的粒子进入到群体中。这样使得粒子跳出当前搜索到的局部最优位置,提高了群体的多样性,在全局范围内寻找更优值。在不同数据集上进行实验,与基于PSO和GA的特征选择和SVM参数联合优化算法相比,GPSO-SVM的分类精度平均提高了2%~3%,选择的特征数目减少了3%~15%。实验结果表明,所提算法的特征选择和参数优化效果更好。 展开更多
关键词 支持向量 特征选择 参数优化 粒子优化算法 遗传算法 相关性指数
下载PDF
基于粒子群优化支持向量机的变压器故障诊断 被引量:49
16
作者 费胜巍 苗玉彬 +1 位作者 刘成良 张晓斌 《高电压技术》 EI CAS CSCD 北大核心 2009年第3期509-513,共5页
为了克服了人工神经网络(ANN)中存在的过拟合、收敛速度慢、容易陷入局部极值等缺点,提出了基于粒子群优化支持向量机(PSO-SVM)的变压器故障诊断方法,即将粒子群优化算法(PSO)用于SVM参数优化。PSO是一种智能群体搜索方法,它源于对鸟类... 为了克服了人工神经网络(ANN)中存在的过拟合、收敛速度慢、容易陷入局部极值等缺点,提出了基于粒子群优化支持向量机(PSO-SVM)的变压器故障诊断方法,即将粒子群优化算法(PSO)用于SVM参数优化。PSO是一种智能群体搜索方法,它源于对鸟类捕食行为的研究。这种方法不仅具有很强的全局搜索能力,而且容易实现,适合于SVM参数优化。变压器故障诊断实例分析结果证明,PSO-SVM的诊断精度高于IEC三比值法、BP神经网络、普通的SVM,PSO-SVM适用于电力变压器故障诊断。 展开更多
关键词 故障诊断 粒子优化 支持向量 电力变压器 参数优化 分类算法 统计学习理论
下载PDF
基于自适应扰动量子粒子群算法参数优化的支持向量回归机短期风电功率预测 被引量:47
17
作者 陈道君 龚庆武 +2 位作者 金朝意 张静 王定美 《电网技术》 EI CSCD 北大核心 2013年第4期974-980,共7页
智能电网的建设和大规模风电接入电网对短期风电功率预测精度提出了更高的要求。为了克服支持向量回归机(support vector regression machine,SVR)依赖人为经验选择学习参数的弊端,在量子粒子群优化(quantum-behaved particle swarm opt... 智能电网的建设和大规模风电接入电网对短期风电功率预测精度提出了更高的要求。为了克服支持向量回归机(support vector regression machine,SVR)依赖人为经验选择学习参数的弊端,在量子粒子群优化(quantum-behaved particle swarm optimization,QPSO)算法中加入自适应早熟判定准则、混合扰动算子和动态扩张收缩系数,提出了自适应扰动量子粒子群优化算法(adaptive disturbance quantum-behaved particle swarm optimization,ADQPSO),并使用ADQPSO优化选择SVR的学习参数。实例研究表明,ADQPSO算法全局寻优能力强、鲁棒性好、计算耗时短,利用ADQPSO优化得到的SVR参数,可有效提高模型的预测精度;与反向传播神经网络(back propagation neural network,BPNN)和径向基神经网络(radial basis functionneural network,RBFNN)相比,提出的ADQPSO-SVR能够提高短期风电功率预测的准确性和稳定性。 展开更多
关键词 短期风电功率预测 学习参数选择 自适应扰动量子粒子优化算法 支持向量回归
下载PDF
基于粒子群优化鲁棒支持向量回归机的中长期负荷预测 被引量:21
18
作者 张雪君 陈刚 +2 位作者 周杰 马爱军 张忠静 《电力系统保护与控制》 EI CSCD 北大核心 2009年第21期77-81,共5页
支持向量机(SVM)已经成功地应用于解决非线性回归和时间序列问题,并且已经开始用于中长期负荷预测。提出了一种基于鲁棒支持向量回归机RSVR(Robust Support Vector Regression)的中长期负荷预测的新方法。给出利用粒子群优化算法对鲁棒... 支持向量机(SVM)已经成功地应用于解决非线性回归和时间序列问题,并且已经开始用于中长期负荷预测。提出了一种基于鲁棒支持向量回归机RSVR(Robust Support Vector Regression)的中长期负荷预测的新方法。给出利用粒子群优化算法对鲁棒支持向量机系数优化选择的方法。建立基于此原理的中长期负荷预测模型,算例分析比较验证本文方法具有预测精度高、计算量小等特点和优势。 展开更多
关键词 中长期负荷预测 鲁棒性 支持向量 回归估计 粒子优化算法
下载PDF
基于粒子群优化算法的支持向量机研究 被引量:51
19
作者 谷文成 柴宝仁 滕艳平 《北京理工大学学报》 EI CAS CSCD 北大核心 2014年第7期705-709,共5页
基于粒子群优化算法提出了一种通过优化支持向量机模型参数,建立更佳的支持向量机数学模型的方法.针对双螺旋分类问题,分别利用基于粒子群优化算法所建立的支持向量机分类器和标准支持向量机分类器进行了仿真实验,利用所建立的评价体系... 基于粒子群优化算法提出了一种通过优化支持向量机模型参数,建立更佳的支持向量机数学模型的方法.针对双螺旋分类问题,分别利用基于粒子群优化算法所建立的支持向量机分类器和标准支持向量机分类器进行了仿真实验,利用所建立的评价体系对仿真实验所获得的实验数据进行了评估,评估结果表明基于粒子群优化算法的支持向量机分类器明显优于标准支持向量机分类器,其分类结果表明基于粒子群优化算法的支持向量机分类器提高了分类结果的准确性,同时也验证了基于粒子群优化算法的支持向量机分类器在数据分类中的有效性. 展开更多
关键词 粒子优化算法(PSO) 支持向量(SVM) 优化 双螺旋分类 评价
下载PDF
基于粒子群优化-支持向量机方法的下肢肌电信号步态识别 被引量:20
20
作者 高发荣 王佳佳 +2 位作者 席旭刚 佘青山 罗志增 《电子与信息学报》 EI CSCD 北大核心 2015年第5期1154-1159,共6页
为提高下肢表面肌电信号步态识别的准确性和实时性,该文提出一种基于粒子群优化(PSO)算法优化支持向量机(SVM)的模式识别方法。首先对消噪后的肌电信号提取积分肌电值和方差作为特征样本,然后利用PSO算法优化SVM的惩罚参数和核函数参数... 为提高下肢表面肌电信号步态识别的准确性和实时性,该文提出一种基于粒子群优化(PSO)算法优化支持向量机(SVM)的模式识别方法。首先对消噪后的肌电信号提取积分肌电值和方差作为特征样本,然后利用PSO算法优化SVM的惩罚参数和核函数参数,最后利用步态动作的肌电信号样本数据对构造的SVM分类器进行训练、测试。实验结果表明PSO-SVM分类器对下肢正常行走5个步态的识别率,明显高于未经参数优化的SVM分类器,优化后平均识别率达到97.8%,并兼顾了分类的准确性和自适应性。 展开更多
关键词 模式识别 步态分析 肌电信号 粒子优化 支持向量
下载PDF
上一页 1 2 66 下一页 到第
使用帮助 返回顶部