期刊文献+
共找到59篇文章
< 1 2 3 >
每页显示 20 50 100
基于K-近邻算法改进粒子群-反向传播算法的织物质量预测技术
1
作者 孙长敏 戴宁 +5 位作者 沈春娅 徐开心 陈炜 胡旭东 袁嫣红 陈祖红 《纺织学报》 EI CAS CSCD 北大核心 2024年第7期72-77,共6页
为解决现有下机织物质量差异性较大且传统验布环节时间较长等问题,提出基于K-近邻(KNN)算法改进粒子群-反向传播(PSO-BP)算法的织物质量等级预测方法。首先分析织物质量预测模型,整理织物疵点类型与织物质量等级分类,并根据织物疵点特... 为解决现有下机织物质量差异性较大且传统验布环节时间较长等问题,提出基于K-近邻(KNN)算法改进粒子群-反向传播(PSO-BP)算法的织物质量等级预测方法。首先分析织物质量预测模型,整理织物疵点类型与织物质量等级分类,并根据织物疵点特征将疵点划分为6类;其次选取14种影响织物质量的因子作为模型输入量;然后详细介绍依据KNN与PSO原理进行织物质量预测流程;最后以浙江兰溪某纺织厂近3个月16186条织物生产数据为例,建立织物质量预测模型。结果显示:该技术对织物质量预测的准确率达到98.054%,且训练时长仅需4.8 s,在保证织物质量预测准确性的同时,极大缩短了检测时间,提高了织造车间生产效率。 展开更多
关键词 织布车间 织物质量 K-近邻算法 粒子-反向传播神经网络算法 织物质量预测
下载PDF
基于改进粒子群优化-反向传播神经网络算法的小麦储藏品质预测模型 被引量:8
2
作者 蒋华伟 郭陶 杨震 《科学技术与工程》 北大核心 2021年第21期8951-8956,共6页
在使用反向传播神经网络(back propagation neural network,BPNN)预测小麦的储藏品质时,由于其易陷入局部极值且收敛速度慢,导致预测误差较大且稳定性较差,由此提出一种改进粒子群(improved particle swarm optimization,IPSO)算法优化... 在使用反向传播神经网络(back propagation neural network,BPNN)预测小麦的储藏品质时,由于其易陷入局部极值且收敛速度慢,导致预测误差较大且稳定性较差,由此提出一种改进粒子群(improved particle swarm optimization,IPSO)算法优化的BPNN预测模型。采用非线性函数动态调整粒子群算法中的惯性权重和学习因子,优化BPNN中的权值参数,进而构建IPSO-BPNN预测模型。为验证该模型的准确性和稳定性,将其与BPNN模型、PSO-BPNN模型进行对比,结果表明:IPSO-BPNN模型预测的均方误差显著降低,有助于提高小麦储藏品质预测的准确性和可靠性。 展开更多
关键词 小麦储藏品质 多指标分析 粒子算法 改进粒子优化-反向传播神经网络(Ipso-bpNN) 预测模型
下载PDF
基于改进的粒子群算法优化反向传播神经网络的热舒适度预测模型 被引量:17
3
作者 张玲 王玲 吴桐 《计算机应用》 CSCD 北大核心 2014年第3期775-779,共5页
针对热舒适度预测是一个复杂的非线性过程,不便于空调的实时控制应用的问题,提出一种基于改进的粒子群优化(PSO)算法优化反向传播(BP)神经网络的热舒适度预测模型。这一预测模型通过采用PSO算法优化BP神经网络的初始权值和阈值,改善了传... 针对热舒适度预测是一个复杂的非线性过程,不便于空调的实时控制应用的问题,提出一种基于改进的粒子群优化(PSO)算法优化反向传播(BP)神经网络的热舒适度预测模型。这一预测模型通过采用PSO算法优化BP神经网络的初始权值和阈值,改善了传统BP算法收敛速度慢及对网络初始值敏感的问题。同时,针对标准PSO算法易出现早熟收敛、局部寻优能力弱等缺点,提出了相应改进策略,进一步提高了PSO优化BP神经网络的能力。实验结果表明:与传统BP模型和标准PSO-BP模型相比,基于改进的PSO-BP算法的热舒适度预测模型具有更高的预测精度和更快的收敛速度。 展开更多
关键词 热舒适度 预测 反向传播神经网络 粒子优化算法 模型
下载PDF
基于粒子群优化算法优化反向传播神经网络构建冷藏草鱼新鲜度的近红外光谱预测模型 被引量:3
4
作者 张沁宇 胡志刚 +4 位作者 徐子健 王子豪 蒋亚军 付丹丹 陈艳 《食品安全质量检测学报》 CAS 北大核心 2023年第22期200-209,共10页
目的 基于机器学习算法构建冷藏草鱼新鲜度的近红外光谱预测模型。方法 采集连续冷藏6d的草鱼片的新鲜度指标,并进行方差分析。选择受冷藏天数影响最大的指标—总挥发性盐基氮(total volatile basic nitrogen,TVB-N)进行定量预测。运用... 目的 基于机器学习算法构建冷藏草鱼新鲜度的近红外光谱预测模型。方法 采集连续冷藏6d的草鱼片的新鲜度指标,并进行方差分析。选择受冷藏天数影响最大的指标—总挥发性盐基氮(total volatile basic nitrogen,TVB-N)进行定量预测。运用x-y距离结合的样本划分(samplesetpartitioningbasedonjointx-y distance,SPXY)方法进行数据集的划分,并采用正交信号校正法(orthogonalsignalcorrection,OSC)、Savitzky-Golay(SG)、一阶导数及其组合算法进行光谱预处理。再运用竞争性自适应重加权采样(competitive adaptivereweightedsampling,CARS)、连续投影算法(successiveprojectionsalgorithm,SPA)、主成分分析(principal component analysis, PCA)对光谱变量进行选择和降维。最后结合偏最小二乘回归(partial least squares regression,PLSR)、反向传播(backpropagation,BP)神经网络和粒子群优化算法(particleswarmoptimization,PSO)优化BP神经网络(PSO-BP),建立草鱼(Ctenopharyngodonidella)片新鲜度定量预测模型。结果 各线性和非线性模型均得到了良好的预测效果,预测集相关系数均超过了0.95。PLSR表现较为稳定, BP神经网络虽提高了校正集预测性能,但是预测集性能不如PLSR。PSO-BP既保证了校正集预测性能,也提高了预测集性能。基于OSC+D1预处理和CARS变量选择后的PSO-BP模型性能最优(R2P=0.987,预测集的均方根误差为0.108,相对分析误差为7.778)。结论 基于PSO-BP算法和近红外光谱的定量预测模型可以很好地预测冷藏鱼肉的新鲜度指标。 展开更多
关键词 近红外光谱 冷藏 草鱼 新鲜度 总挥发性盐基氮 粒子优化算法 反向传播神经网络 正交信号校正法
下载PDF
基于改进粒子群优化-反向传播神经网络的制造业产能预测 被引量:1
5
作者 甄文冬 陈进 张莉莉 《机械制造》 2019年第3期88-90,共3页
为了精准预测制造业产能,对粒子群优化算法和反向传播神经网络进行研究,进而提出基于改进粒子群优化-反向传播神经网络的制造业产能预测方法。在这一预测方法中,通过粒子群优化算法对反向传播神经网络的权值和阈值进行优化搜索,同时引... 为了精准预测制造业产能,对粒子群优化算法和反向传播神经网络进行研究,进而提出基于改进粒子群优化-反向传播神经网络的制造业产能预测方法。在这一预测方法中,通过粒子群优化算法对反向传播神经网络的权值和阈值进行优化搜索,同时引入自适应变异算子,避免粒子群优化算法陷入局部极值,并通过MATLAB软件对制造业产能进行预测。研究结果表明,改进粒子群优化-反向传播神经网络的预测效果优于粒子群优化-反向传播神经网络和反向传播神经网络。 展开更多
关键词 粒子优化算法 反向传播神经网络 制造业 产能
下载PDF
基于优化PSO-BP算法的软件缺陷预测模型 被引量:7
6
作者 马振宇 张威 +1 位作者 毕学军 金丽亚 《计算机工程与设计》 北大核心 2016年第2期413-417,共5页
为能够高效地使用缺陷预测方法,提出一种基于优化算法的软件缺陷预测模型。基于BP算法建立模型,使用SCPSO算法优化BP的参数值,通过十折交叉的方法对结果展开分析。与PSO优化BP方法进行比较实验,比较结果表明,SC-PSO在优化BP参数值方面比... 为能够高效地使用缺陷预测方法,提出一种基于优化算法的软件缺陷预测模型。基于BP算法建立模型,使用SCPSO算法优化BP的参数值,通过十折交叉的方法对结果展开分析。与PSO优化BP方法进行比较实验,比较结果表明,SC-PSO在优化BP参数值方面比PSO更好,对软件缺陷预测有更大帮助。 展开更多
关键词 遗传算法粒子 优化算法 反向传播算法 软件缺陷 预测模型
下载PDF
基于WPSO-BP和L-MBWO的多翼离心风机优化研究
7
作者 徐韧 李君宇 +3 位作者 周明 刘林波 张志富 黄其柏 《机电工程》 CAS 北大核心 2024年第10期1833-1843,共11页
针对多翼离心风机气动性能、噪声情况难以同时改进的问题,提出了一种基于变权重粒子群优化算法的反向传播神经网络风机性能预测模型(WPSO-BP),以及一种基于逻辑混沌初始化的多目标白鲸优化算法(L-MBWO),并将二者应用于多翼离心风机的优... 针对多翼离心风机气动性能、噪声情况难以同时改进的问题,提出了一种基于变权重粒子群优化算法的反向传播神经网络风机性能预测模型(WPSO-BP),以及一种基于逻辑混沌初始化的多目标白鲸优化算法(L-MBWO),并将二者应用于多翼离心风机的优化设计中。首先,选取了叶片进出口角、倾斜蜗舌的最大蜗舌半径、叶片切除角度作为设计变量,把风机的全压、效率、声压级作为优化目标;然后,构建了WPSO-BP预测模型,以反映设计变量与优化目标之间的关系,定量分析对比了该模型与BP神经网络预测模型,预测值用于风机的性能优化;接着,将逻辑混沌初始化引入到白鲸优化算法(BWO),基于第三代非支配排序遗传算法(NSGA-Ⅲ)构建了L-MBWO优化算法;最后,在实验验证仿真可靠的前提下,将提出的预测模型和优化算法应用于风机优化,并对优化效果进行了综合分析。研究结果表明:优化后的风机全压增加了34.79 Pa,效率提高了0.67%,噪声降低了1.73 dB,实现了多个优化目标之间的平衡,有效改善了风机的综合性能,为多翼离心风机的优化设计提供了一种新思路。 展开更多
关键词 多翼离心风机 变权重 基于变权重粒子优化算法反向传播神经网络风机性能预测模型 白鲸优化算法 基于逻辑混沌初始化的多目标白鲸优化算法 预测模型 风机全压 风机效率 风机噪声
下载PDF
引入粒子生存值的SPSO-BP气体传感器补偿算法 被引量:4
8
作者 程洋 李柏林 +2 位作者 欧阳 罗建桥 黄翰鹏 《传感器与微系统》 CSCD 2020年第8期134-137,共4页
针对复杂环境下气体传感器的稳定性不足的问题,提出了一种基于改进反向传播(BP)神经网络的传感器补偿算法。首先建立基于温湿度补偿的BP神经网络结构,并确定各层网络的节点数。然后提出用粒子群算法(PSO)优化BP神经网络的初始权值和阈... 针对复杂环境下气体传感器的稳定性不足的问题,提出了一种基于改进反向传播(BP)神经网络的传感器补偿算法。首先建立基于温湿度补偿的BP神经网络结构,并确定各层网络的节点数。然后提出用粒子群算法(PSO)优化BP神经网络的初始权值和阈值。最后引入粒子生存值并结合模拟退火改进传统PSO算法(SPSO),提高模型的全局极值寻优能力。实验结果表明:本文改进的SPSO算法较传统的PSO算法寻优能力更强,将SPSO与BP神经网络相结合,提高了气体传感器的温湿度补偿精度。 展开更多
关键词 反向传播(BP)神经网络 粒子优化算法 粒子生存值 温湿度补偿
下载PDF
基于PSO-BP神经网络的Savonius型叶轮阵列消波性能优化
9
作者 盛勇 宋瑞银 +3 位作者 杨状状 刘博宇 吴瑞明 任聪杰 《船舶工程》 CSCD 北大核心 2024年第5期160-168,共9页
为了提高Savonius型(S型)叶轮的消波性能,提出一种S型叶轮阵列装置。通过试验记录不同的叶轮间距和叶轮相对入水深度等5个参数下波浪经过叶轮阵列后的透射系数K_(t),建立基于粒子群优化(PSO)算法和反向传播(BP)神经网络的S型叶轮阵列消... 为了提高Savonius型(S型)叶轮的消波性能,提出一种S型叶轮阵列装置。通过试验记录不同的叶轮间距和叶轮相对入水深度等5个参数下波浪经过叶轮阵列后的透射系数K_(t),建立基于粒子群优化(PSO)算法和反向传播(BP)神经网络的S型叶轮阵列消波性能预测模型。将采用该模型与采用BP网络模型和GA-BP网络模型得到的平均绝对误差、均方根误差和决定系数R^(2)指标进行对比,结果表明,采用PSO-BP神经网络模型优化能得到误差更小、更精准的预测结果。当相邻叶轮间距分别为0.62 m和0.41 m、各叶轮入水深度分别为0.15 m、0.18 m和0.19 m时,S型叶轮阵列具有相对最佳的消波性能。 展开更多
关键词 Savonius型叶轮 消波性能 粒子优化(PSO)算法 反向传播(BP)神经网络
下载PDF
基于改进反向传播算法的声音识别及健康检测技术
10
作者 田昊旻 马祎航 《计算机测量与控制》 2024年第11期87-94,共8页
随着计算机技术的发展,声音识别与健康检测成为现代医学诊断的重要手段之一;通过对新生婴儿声音的分析,可以早期发现和诊断多种健康问题;研究提出一种基于改进反向传播神经网络的声音识别模型,通过声音实现对新生儿的健康状况分析;该模... 随着计算机技术的发展,声音识别与健康检测成为现代医学诊断的重要手段之一;通过对新生婴儿声音的分析,可以早期发现和诊断多种健康问题;研究提出一种基于改进反向传播神经网络的声音识别模型,通过声音实现对新生儿的健康状况分析;该模型通过小波变换对声音数据进行预处理,随后结合粒子群优化算法和反向传播神经网络设计检测模型;通过引入粒子群优化算法对反向传播算法进行改进,提高了模型的局部搜索能力和收敛速度;实验结果表明,在数据集为1000时,小波去噪模型的信噪比为0.97,结构信息损失率为0.18,交并比为0.96;针对不同类型的声音,改进反向传播神经网络模型识别的准确率分别为0.87、0.83、0.97、0.88,均方根误差值为0.09、0.07、0.05、0.07;结果表明,所提出的声音识别与健康检测模型能够有效提高声音数据的识别精度和检测效率,有助于新生儿健康状态的评估。 展开更多
关键词 健康检测 声音识别 粒子优化算法 小波去噪 反向传播
下载PDF
基于PSO-BP神经网络算法矿井瓦斯涌出量回归预测应用
11
作者 刘大可 张浩强 郭翔 《中国矿山工程》 2024年第3期38-43,共6页
本文针对矿井瓦斯涌出量预测问题,建立了PSO-BP神经网络算法模型,收集了山西某煤矿2017年至2023年期间的20组样本数据,将其中的15组作为训练集,对剩余5组的样本数据进行瓦斯涌出量回归预测,并最终对比了PSO-BP神经网络算法与BP神经网络... 本文针对矿井瓦斯涌出量预测问题,建立了PSO-BP神经网络算法模型,收集了山西某煤矿2017年至2023年期间的20组样本数据,将其中的15组作为训练集,对剩余5组的样本数据进行瓦斯涌出量回归预测,并最终对比了PSO-BP神经网络算法与BP神经网络算法的平均绝对误差、均方误差、均方根误差、平均绝对百分比误差和预测准确率等评价指标。结果表明,基于PSO-BP神经网络算法的瓦斯涌出量预测模型具有更高的准确性,能够满足矿山实际需求,具有较好的实用性和创新性,为其他矿井在瓦斯涌出量预测方面提供了一定的借鉴意义。 展开更多
关键词 瓦斯涌出量预测 粒子优化算法 反向传播神经网络 回归预测 评价指标
下载PDF
基于改进PSO-BP算法的快递业务量预测 被引量:16
12
作者 许荣斌 王业国 +3 位作者 王福田 何明慧 汪梦龙 谢莹 《计算机集成制造系统》 EI CSCD 北大核心 2018年第7期1871-1879,共9页
为了有效监控快递运输过程,对日常快递业务量进行预测,以保证快递包裹能够按时到达。将大量快递包裹运输过程抽象建模以构造多流程实例;提出改进惯性权重的粒子群优化算法和反向传播神经网络的组合模型(IPSO-BP)来预测物流公司日常快递... 为了有效监控快递运输过程,对日常快递业务量进行预测,以保证快递包裹能够按时到达。将大量快递包裹运输过程抽象建模以构造多流程实例;提出改进惯性权重的粒子群优化算法和反向传播神经网络的组合模型(IPSO-BP)来预测物流公司日常快递业务量;进而动态申请合适数量云资源以处理变化的业务需求。大量仿真实验证明,在神经网络参数选择合理的情况下,IPSO-BP模型比其他传统方法有更好的预测效果。 展开更多
关键词 物流运输 工作流 粒子优化算法 反向传播神经网络 快递业务量预测
下载PDF
IPSO-BP算法在半主动悬架控制中的应用 被引量:3
13
作者 刘顺安 胡庆玉 +3 位作者 高春甫 于显利 姚永明 陈延礼 《北京工业大学学报》 EI CAS CSCD 北大核心 2011年第9期1281-1286,共6页
为了改善半主动悬架的性能,提出采用改进的粒子群优化(improved particle swarm optimization,IPSO)-向后传播(back propagation,BP)算法作为半主动悬架自适应控制,该算法将标准粒子群算法进行改进,用以改善粒子群全局收敛性和收敛速度... 为了改善半主动悬架的性能,提出采用改进的粒子群优化(improved particle swarm optimization,IPSO)-向后传播(back propagation,BP)算法作为半主动悬架自适应控制,该算法将标准粒子群算法进行改进,用以改善粒子群全局收敛性和收敛速度,并将改进后的IPSO算法作为BP神经网络的学习算法,用于半主动悬架的自适应控制.自适应控制器采用了双神经网络单元结构,一个作为输入端的控制器,根据路面输入调节半主动悬架阻尼值,另一个作为半主动悬架的辨识器,并进行在线识别.通过该控制器进行半主动悬架自适应控制数值仿真,结果表明,基于该算法的控制器明显改善了汽车的舒适性和平顺性,使得车身的垂向加速度比粒子群优化(particle swarm optimization,PSO)-BP半主动悬架的降低了21.73%,提高了汽车悬架的性能. 展开更多
关键词 半主动悬架 自适应控制 粒子优化(IPSO)-向后传播(BP)算法 粒子优化(IPSO)机制
下载PDF
改进的QPSO-BP算法的铀价格预测模型及应用 被引量:2
14
作者 陈建宏 周汉陵 +1 位作者 于凤玲 杨珊 《计算机工程与应用》 CSCD 2013年第21期235-239,244,共6页
铀产品价格的变化直接决定了铀矿项目的价值,铀产品价格的预测,可提高企业的经营决策能力和抗风险能力。为提高预测的精度,采用基于改进的量子粒子群算法优化训练BP神经网络的学习算法,对铀价格进行建模预测。采用改进的QPSO算法优化BP... 铀产品价格的变化直接决定了铀矿项目的价值,铀产品价格的预测,可提高企业的经营决策能力和抗风险能力。为提高预测的精度,采用基于改进的量子粒子群算法优化训练BP神经网络的学习算法,对铀价格进行建模预测。采用改进的QPSO算法优化BP网络的权值与阈值。将通过优化搜索得到的粒子的位置向量解码作为网络的权值与阈值,选择网络结构5-11-1对铀价格进行预测。结果表明:QPSO-BP模型的预测精度(0.15%)高于PSO-BP模型(4.55%)与BP模型(30.86%)。泛化能力指标平均相对变动值为0.002 5,预测结果的泛化能力提高。相对误差分布集中,预测结果稳定。说明该模型在铀价格预测中有效,对项目投资决策有一定的参考价值。 展开更多
关键词 价格预测 量子粒子算法 量子粒子算法(QPSO)-反向传播(BP)模型 铀价
下载PDF
基于EMD-PSO-BP模型的短期潮流流速预测
15
作者 邵萌 潘正中 +2 位作者 孙金伟 邵珠晓 伊传秀 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第11期134-141,共8页
针对潮流流速的随机性和波动性,本研究基于经验模态分解(Empirical mode decomposition,EMD)和粒子群优化(Particle swarm optimization,PSO)算法,改进了反向传播(Back propagation,BP)神经网络的短期潮流流速预测模型。该模型首先对原... 针对潮流流速的随机性和波动性,本研究基于经验模态分解(Empirical mode decomposition,EMD)和粒子群优化(Particle swarm optimization,PSO)算法,改进了反向传播(Back propagation,BP)神经网络的短期潮流流速预测模型。该模型首先对原始流速序列进行EMD分解,得到多个本征模函数(Intrinsic mode function,IMF)和残差。然后,利用PSO改进BP神经网络,对分解所得的IMF和残差分别进行预测。最后,将各个预测结果相结合,得出流速的最终预测结果,从而提高潮流流速的预测精度。本文以江苏省潮流流速为例,分别建立BP、PSO-BP、EMD-BP以及EMD-PSO-BP四类预测模型,以对潮流流速进行预测和对比分析。结果表明,相较于其他模型,EMD-PSO-BP预测模型在潮流流速的预测方面具有更高的精度,为潮流能开发提供重要的数据支撑。 展开更多
关键词 潮流流速预测 经验模态分解 反向传播神经网络 粒子优化算法 本征模函数
下载PDF
递阶遗传粒子群算法在神经网络设计中的应用 被引量:1
16
作者 吕俊 高慧萍 杨慧 《计算机工程与应用》 CSCD 北大核心 2010年第33期227-229,243,共4页
将递阶遗传粒子群算法(HGAPSO)应用于神经网络设计,可以在对网络拓扑结构优化的同时对连接权重进行求解。该算法结合了遗传算法在解决离散问题和粒子群算法在解决连续问题上的优势,并利用BP算法沿误差最速下降的能力对连接权重进一步学... 将递阶遗传粒子群算法(HGAPSO)应用于神经网络设计,可以在对网络拓扑结构优化的同时对连接权重进行求解。该算法结合了遗传算法在解决离散问题和粒子群算法在解决连续问题上的优势,并利用BP算法沿误差最速下降的能力对连接权重进一步学习,达到全局最优和快速搜索的有机结合。通过对混沌时序信号的预测,表明递阶遗传粒子群算法在较大程度上提高了神经网络的学习性能和泛化能力。 展开更多
关键词 递阶遗传算法 粒子算法 误差反向传播(BP)算法 人工神经网络 优化 混沌时间序列
下载PDF
基于IPSO-BP神经网络的WSNs数据融合算法 被引量:4
17
作者 马占飞 巩传胜 +2 位作者 李克见 林继祥 刘雨忻 《传感器与微系统》 CSCD 北大核心 2023年第12期151-154,159,共5页
针对无线传感器网络(WSNs)数据融合算法中反向传播(BP)神经网络存在对初值敏感、收敛速度慢、易陷入局部最优解等问题,提出基于改进粒子群优化BP(IPSO-BP)神经网络的WSNs数据融合算法。首先,用细菌觅食算法的趋化、迁徙算子对粒子群优化... 针对无线传感器网络(WSNs)数据融合算法中反向传播(BP)神经网络存在对初值敏感、收敛速度慢、易陷入局部最优解等问题,提出基于改进粒子群优化BP(IPSO-BP)神经网络的WSNs数据融合算法。首先,用细菌觅食算法的趋化、迁徙算子对粒子群优化(PSO)算法进行改进;然后,用IPSO算法优化BP神经网络的权值和阈值,再引入到WSNs数据融合中,簇成员节点负责采集监测数据,在簇首节点通过优化后的BP神经网络对数据进行特征提取,并将融合结果发送至汇聚节点。仿真结果表明:IPSO-BP算法能有效提高融合精度和收敛速度,减少冗余数据传输,延长网络生命周期。 展开更多
关键词 无线传感器网络 数据融合 反向传播神经网络 粒子优化算法 细菌觅食优化算法
下载PDF
基于改进的粒子群优化-反向传播神经网络的CO_(2)红外吸收光谱定量分析
18
作者 吴旭阳 管港云 +6 位作者 刘志伟 朱冰洁 耿子迅 郑传涛 严国锋 张宇 王一丁 《光学学报》 EI CAS CSCD 北大核心 2024年第11期305-314,共10页
在吸收光谱气体传感领域,实测光谱存在信噪比低和由光谱失真带来的线性度低的问题,使得传统的线性分析方法难以实现高准确度的气体体积分数反演。为此,本文提出了一种基于进化策略、参数调整策略双重改进的粒子群优化(IPSO)算法,并结合... 在吸收光谱气体传感领域,实测光谱存在信噪比低和由光谱失真带来的线性度低的问题,使得传统的线性分析方法难以实现高准确度的气体体积分数反演。为此,本文提出了一种基于进化策略、参数调整策略双重改进的粒子群优化(IPSO)算法,并结合误差反向传播神经网络(BPNN),建立了网络初始连接权值和阈值优化的反向传播(BP)神经网络(IPSO-BPNN)气体体积分数反演模型。基于光频梳直接吸收光谱技术测量CO_(2)红外吸收光谱,构建了由训练集、验证集和测试集构成的多体积分数光谱数据集,用于IPSO-BPNN模型的气体体积分数反演性能测试。利用IPSO-BPNN模型对14种体积分数的CO_(2)气体进行了反演,结果表明,与粒子群优化算法优化的BP神经网络(PSO-BPNN)、BPNN、极限学习机(ELM)、支持向量机(SVM)、最大吸光度提取(MAE)法五种气体体积分数的反演方法相比,IPSO-BPNN模型的均方误差最小(1.95×10^(-6)),相对误差绝对值的平均值最低(0.0112),决定系数最大(0.9997)。上述结果验证了IPSO-BPNN模型优异的鲁棒性以及在高准确度分子吸收光谱分析中重要的应用潜力。 展开更多
关键词 光谱技术 红外气体检测 气体体积分数反演 粒子优化算法 反向传播神经网络
原文传递
基于SBAS-InSAR和PSO-BP神经网络算法的矿区地表沉降监测及预测 被引量:16
19
作者 周定义 左小清 《云南大学学报(自然科学版)》 CAS CSCD 北大核心 2021年第5期895-905,共11页
针对传统监测技术无法进行长时间矿区地表沉降监测以及现有预测模型过度依赖沉降数据、模型单一等问题,提出一种基于小基线集合成孔径雷达干涉(Small Baseline Subsets Interferometric Synthetic Aperture Radar,SBAS-InSAR)和粒子群优... 针对传统监测技术无法进行长时间矿区地表沉降监测以及现有预测模型过度依赖沉降数据、模型单一等问题,提出一种基于小基线集合成孔径雷达干涉(Small Baseline Subsets Interferometric Synthetic Aperture Radar,SBAS-InSAR)和粒子群优化-反向传播(Particle Swarm Optimization-Back Propagation,PSO-BP)神经网络算法的矿区地表沉降监测及预测模型.首先,利用SBAS-InSAR技术获取矿区地表沉降监测值;然后,选取矿区地表沉降的影响因子与获取的沉降监测值从多因子角度构建PSO-BP预测模型;最后,分析该方法的有效性和合理性.实验结果表明,利用SBAS-InSAR能有效监测矿区地表长时间沉降,随着训练样本的增加,PSO-BP预测值与SBAS-InSAR沉降值残差逐渐减少,算法收敛迭代加快,均方误差降低.与现有监测方法及预测模型的对比,证明了SBAS-InSAR在矿区地表长时间沉降监测中的优势以及PSO-BP模型在矿区地表沉降预测中的有效性和合理性,该方法可作为矿区地表长时间沉降监测和预测的有效手段. 展开更多
关键词 小基线集合成孔径雷达干涉(SBAS-InSAR) 沉降监测 矿区地表 影响因子 粒子优化-反向传播(pso-bp)算法 预测
下载PDF
基于PSO-BP模型的差速器装配密封质量预测
20
作者 徐静 杨德岭 《森林工程》 北大核心 2024年第5期134-144,共11页
为了对林业运材车差速器总成装配密封质量进行事前预测,提高其产品质量及装配合格率,提出一种灰色关联分析算法结合粒子群(PSO)优化BP神经网络的预测模型。将由灰色关联分析算法筛选出影响差速器总成密封质量的关键装配工艺参数作为输... 为了对林业运材车差速器总成装配密封质量进行事前预测,提高其产品质量及装配合格率,提出一种灰色关联分析算法结合粒子群(PSO)优化BP神经网络的预测模型。将由灰色关联分析算法筛选出影响差速器总成密封质量的关键装配工艺参数作为输入变量,差速器总成泄漏值作为输出变量,创建基于粒子群(PSO)算法优化BP神经网络(PSO-BP)的预测模型,结果表明,由灰色关联分析简化后的PSO-BP预测方法得到的平均相对误差最小为1.18%。在此基础上,应用PyQt5 GUI库开发差速器总成泄漏值预测系统。研究结果可以为差速器总成密封质量预测提供理论依据。 展开更多
关键词 运材车辆 差速器 密封质量 灰色关联分析算法 粒子优化算法 反向传播神经网络
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部