期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于优化粒子群K-means聚类算法在风功率预测中的应用 被引量:2
1
作者 郭敏 赵巧娥 +2 位作者 王先军 高金城 李昆 《自动化技术与应用》 2017年第8期24-26,39,共4页
由于风的间隙性、随机性、波动性很大,为了提高电网运行稳定性,有必要进行风功率预测。由于风电机组在实际当中运行受地理环境因素的限制,所以传统风电场建模进行风功率预测的方法不再适用,而通过K-means聚类算法求取风电机组的风速-功... 由于风的间隙性、随机性、波动性很大,为了提高电网运行稳定性,有必要进行风功率预测。由于风电机组在实际当中运行受地理环境因素的限制,所以传统风电场建模进行风功率预测的方法不再适用,而通过K-means聚类算法求取风电机组的风速-功率曲线虽然准确性有所提高,但由于k-means聚类中心随机选择,仍然存在很多缺陷。本文提出利用优化粒子群的K-means聚类算法进行风功率预测,通过仿真结果验证了利用优化粒子群的K-means聚类算法进行风功率预测的准确性要比传统的方法以及K-means聚类算法的准确性高。 展开更多
关键词 风功率 预测 K-MEANS算法 优化粒子的K—means算法
下载PDF
基于KSOM-PSO算法的无线传感器网络入侵检测研究 被引量:7
2
作者 刘双 石飞 +2 位作者 汪烈军 秦继伟 郭琰 《中国科技论文》 CAS 北大核心 2017年第2期148-153,共6页
针对无线传感器网络中的入侵检测机制对拒绝服务(denial of service,DoS)攻击检测精度不高的问题,提出了基于核自组织映射(kernel self-organizing map,KSOM)和粒子群优化(particle swarm optimization,PSO)聚类算法融合的KSOM-PSO神经... 针对无线传感器网络中的入侵检测机制对拒绝服务(denial of service,DoS)攻击检测精度不高的问题,提出了基于核自组织映射(kernel self-organizing map,KSOM)和粒子群优化(particle swarm optimization,PSO)聚类算法融合的KSOM-PSO神经网络算法作为无线传感器网络的检测机制。首先在传统SOM算法中引进核函数进行聚类;其次使用SOM聚类获得的获胜神经元权值对PSO粒子的初始位置初始化;最后在PSO算法中将传统的线性减小权值的方法改为非线性减小权值的方法,以提高PSO算法的全局搜索效率和局部搜索精度。实验结果表明,KSOM-PSO与传统的PSO聚类算法和SOM算法比较,检测精度有较大的提高,且收敛速度更快。 展开更多
关键词 无线传感器网络 入侵检测机制 检测精度 核自组织映射 粒子群优化聚类算法
下载PDF
基于稀疏表示的多幅图像快速超分辨率重建 被引量:5
3
作者 杨飚 邸苗 《传感器与微系统》 CSCD 2018年第1期43-45,共3页
针对基于稀疏表示的图像超分辨率重建(SRR)提高图像的重建质量,但一般存在计算量大、耗时长的问题,通过粒子群优化稀疏表示算法获得稀疏表示;对多幅图像的稀疏系数进行融合;根据融合后的稀疏系数重建得到高分辨率图像。实验结果表明:方... 针对基于稀疏表示的图像超分辨率重建(SRR)提高图像的重建质量,但一般存在计算量大、耗时长的问题,通过粒子群优化稀疏表示算法获得稀疏表示;对多幅图像的稀疏系数进行融合;根据融合后的稀疏系数重建得到高分辨率图像。实验结果表明:方法的重建速度更快,重建质量更高。 展开更多
关键词 超分辨率重建 稀疏表示 粒子群优化聚类算法 稀疏系数融合
下载PDF
An efficient hybrid evolutionary optimization algorithm based on PSO and SA for clustering 被引量:9
4
作者 Taher NIKNAM Babak AMIRI +1 位作者 Javad OLAMAEI Ali AREFI 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2009年第4期512-519,共8页
The K-means algorithm is one of the most popular techniques in clustering. Nevertheless, the performance of the Kmeans algorithm depends highly on initial cluster centers and converges to local minima. This paper prop... The K-means algorithm is one of the most popular techniques in clustering. Nevertheless, the performance of the Kmeans algorithm depends highly on initial cluster centers and converges to local minima. This paper proposes a hybrid evolutionary programming based clustering algorithm, called PSO-SA, by combining particle swarm optimization (PSO) and simulated annealing (SA). The basic idea is to search around the global solution by SA and to increase the information exchange among particles using a mutation operator to escape local optima. Three datasets, Iris, Wisconsin Breast Cancer, and Ripley's Glass, have been considered to show the effectiveness of the proposed clustering algorithm in providing optimal clusters. The simulation results show that the PSO-SA clustering algorithm not only has a better response but also converges more quickly than the K-means, PSO, and SA algorithms. 展开更多
关键词 Simulated annealing (SA) Data clustering Hybrid evolutionary optimization algorithm K-means clustering Parti-cle swarm optimization (PSO)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部