期刊文献+
共找到465篇文章
< 1 2 24 >
每页显示 20 50 100
基于粒子群优化极限学习机的隧道地表沉降预测 被引量:1
1
作者 汪敏 《施工技术(中英文)》 CAS 2024年第7期60-64,共5页
为了提高地表沉降预测的精度和速度,提出了一种改进的极限学习机模型用于预测地表沉降。引入粒子群算法优化极限学习机的权值和阈值,提高极限学习机的预测效果。以济南轨道交通4号线燕山立交桥站为例,进行模型实证分析,利用改进的极限... 为了提高地表沉降预测的精度和速度,提出了一种改进的极限学习机模型用于预测地表沉降。引入粒子群算法优化极限学习机的权值和阈值,提高极限学习机的预测效果。以济南轨道交通4号线燕山立交桥站为例,进行模型实证分析,利用改进的极限学习机进行盾构隧道地表沉降预测,并与传统的极限学习机模型进行对比。经过粒子群算法改进的极限学习机模型MSE降低了22%,RMSE降低了28%,MAPE降低了5.3%,验证了经粒子群算法改进后的极限学习机具有较好的预测精度和预测速度。对改进的极限学习机进行了泛化能力实证,验证了该模型具有较好的泛化能力。 展开更多
关键词 地铁车站 隧道 地表沉降 极限学习 粒子算法 预测
下载PDF
基于粒子群优化的核极限学习机模型的风电功率区间预测方法 被引量:141
2
作者 杨锡运 关文渊 +1 位作者 刘玉奇 肖运启 《中国电机工程学报》 EI CSCD 北大核心 2015年第S1期146-153,共8页
风电功率预测能为电网规划和运行提供重要依据,传统预测方法多为点预测,其结果一般有不同程度的误差,区间预测方法能有效描述风电输出功率的不确定性因而逐步受到重视。针对短期风电功率概率区间预测问题,提出一种基于粒子群优化的核极... 风电功率预测能为电网规划和运行提供重要依据,传统预测方法多为点预测,其结果一般有不同程度的误差,区间预测方法能有效描述风电输出功率的不确定性因而逐步受到重视。针对短期风电功率概率区间预测问题,提出一种基于粒子群优化的核极限学习机(PSO-KELM)模型,用于风电功率区间预测。通过核极限学习机(KELM)建立预测模型,采用粒子群算法对KELM的输出权值进行优化,寻找最优预测区间上下限,充分利用了KELM学习速度快、泛化能力强的优点,实现了对风电功率的快速区间预测。通过与PSO-ELM模型对比分析风电场在不同置信水平下的概率预测结果,发现PSO-KELM模型的预测精度更高,速度更快,能够为风电功率区间预测及风电并网安全稳定运行提供决策支持。 展开更多
关键词 风电功率 区间预测 极限学习 粒子
下载PDF
自适应混沌粒子群算法对极限学习机参数的优化 被引量:22
3
作者 陈晓青 陆慧娟 +1 位作者 郑文斌 严珂 《计算机应用》 CSCD 北大核心 2016年第11期3123-3126,共4页
针对极限学习机(ELM)在处理非线性数据时效果不理想,并且ELM的参数随机化不利于模型泛化的特点,提出了一种改进的极限学习机算法。结合自适应混沌粒子群(ACPSO)算法对ELM的参数进行优化,以增强算法的稳定性,提高ELM对基因表达数据分类... 针对极限学习机(ELM)在处理非线性数据时效果不理想,并且ELM的参数随机化不利于模型泛化的特点,提出了一种改进的极限学习机算法。结合自适应混沌粒子群(ACPSO)算法对ELM的参数进行优化,以增强算法的稳定性,提高ELM对基因表达数据分类的精度。在UCI基因数据集上进行仿真实验,实验结果表明,与探测粒子群-极限学习机(DPSO-ELM)、粒子群-极限学习机(PSO-ELM)等算法相比,自适应混沌粒子群-极限学习机(ACPSOELM)算法具有较好的稳定性、可靠性,且能有效提高基因分类精度。 展开更多
关键词 自适应 极限学习 混沌粒子 基因分类
下载PDF
基于结合混沌纵横交叉的粒子群算法优化极限学习机的短期负荷预测 被引量:26
4
作者 殷豪 董朕 孟安波 《计算机应用研究》 CSCD 北大核心 2018年第7期2088-2091,共4页
为提高短期负荷预测精度,针对传统的单一负荷预测模型精度低以及常规智能算法在解决高维、多模复杂问题时容易陷入局部最优的问题进行了研究,提出了一种结合混沌纵横交叉的粒子群算法(CC-PSO)优化极限学习机(ELM)的短期负荷预测模型。EL... 为提高短期负荷预测精度,针对传统的单一负荷预测模型精度低以及常规智能算法在解决高维、多模复杂问题时容易陷入局部最优的问题进行了研究,提出了一种结合混沌纵横交叉的粒子群算法(CC-PSO)优化极限学习机(ELM)的短期负荷预测模型。ELM的泛化能力与其输入权值和隐含层偏置密切相关,采用结合混沌纵横交叉的粒子群算法优化ELM的输入权值与隐含层偏置,提高了ELM的泛化能力和预测精度。选择广东某地区实际电网负荷数据进行分析,研究结果表明,相对于BP神经网络和支持向量机,ELM具有更高的泛化能力和预测精度;CC-PSO相对于粒子群和遗传算法具有更高的全局搜索能力,CC-PSO-ELM模型具有较高的负荷预测精度。 展开更多
关键词 极限学习 混沌纵横交叉 粒子算法 预测精度 短期负荷预测
下载PDF
基于改进粒子群优化的并行极限学习机 被引量:11
5
作者 李婉华 陈羽中 +2 位作者 郭昆 郭松荣 刘漳辉 《模式识别与人工智能》 EI CSCD 北大核心 2016年第9期840-849,共10页
为了提高极限学习机(ELM)网络的稳定性,提出基于改进粒子群优化的极限学习机(IPSO-ELM).结合改进的粒子群优化算法寻找ELM网络中最优的输入权值、隐层偏置及隐层节点数.通过引入变异算子,增强种群的多样性,并提高收敛速度.为了处理大规... 为了提高极限学习机(ELM)网络的稳定性,提出基于改进粒子群优化的极限学习机(IPSO-ELM).结合改进的粒子群优化算法寻找ELM网络中最优的输入权值、隐层偏置及隐层节点数.通过引入变异算子,增强种群的多样性,并提高收敛速度.为了处理大规模电力负荷数据,提出基于Spark并行计算框架的并行化算法(PIPSO-ELM).基于真实电力负荷数据的实验表明,PIPSO-ELM具有更高的稳定性及可扩展性,适合处理大规模的电力负荷数据. 展开更多
关键词 电力负荷预测 极限学习(ELM) 粒子优化 变异算子 并行计算
下载PDF
一种基于粒子群优化的极限学习机 被引量:73
6
作者 王杰 毕浩洋 《郑州大学学报(理学版)》 CAS 北大核心 2013年第1期100-104,共5页
极限学习机(ELM)是一种新型的前馈神经网络,相比于传统的单隐含层前馈神经网络(SLFN),ELM具有速度快、误差小的优点.由于随机给定输入权值和偏差,ELM通常需要较多隐含层节点才能达到理想精度.粒子群极限学习机算法为使用粒子群算法(part... 极限学习机(ELM)是一种新型的前馈神经网络,相比于传统的单隐含层前馈神经网络(SLFN),ELM具有速度快、误差小的优点.由于随机给定输入权值和偏差,ELM通常需要较多隐含层节点才能达到理想精度.粒子群极限学习机算法为使用粒子群算法(particle swarm optimization,PSO)选择最优的输入权值矩阵和隐含层偏差,从而计算出输出权值矩阵.一维Sinc函数拟合实验表明,相比于ELM算法和传统神经网络算法,粒子群极限学习机算法依靠较少的隐含层节点能够获得较高精度. 展开更多
关键词 粒子 极限学习 隐含层节点
下载PDF
基于粒子群优化极限学习机的水质评价新模型 被引量:18
7
作者 张颖 李梅 《环境科学与技术》 CAS CSCD 北大核心 2016年第5期135-139,共5页
河流水质实时评价技术对当前河流水资源管理和保护具有重要意义。该文以淮河水质为例,利用粒子群优化的极限学习机(Particle Swarm Optimization-Extreme Learning Machine,PSO-ELM)分类算法对淮河水质进行类别判定。在极限学习机(ELM)... 河流水质实时评价技术对当前河流水资源管理和保护具有重要意义。该文以淮河水质为例,利用粒子群优化的极限学习机(Particle Swarm Optimization-Extreme Learning Machine,PSO-ELM)分类算法对淮河水质进行类别判定。在极限学习机(ELM)分类算法中随机给定输入权值矩阵和隐含层偏置,需要较多的隐含层节点才能达到所需的精度要求,隐含层节点过多易于出现过拟合现象并增加算法的计算量。该文利用粒子群算法(PSO)优化极限学习机的输入权值矩阵和隐含层偏置,计算输出权值矩阵,以减少隐含层节点。通过对比PSO-ELM、ELM这2种算法发现,PSO-ELM算法以较少的隐含层节点可获得更高的精度,降低了对实验样本的需求量,提高了模型的拟合能力。实验结果表明,PSO-ELM对于水质类别判定具有一定的可行性和有效性。 展开更多
关键词 粒子优化 极限学习 水质评价 权值 隐含层
下载PDF
基于改进粒子群优化算法和极限学习机的混凝土坝变形预测 被引量:31
8
作者 李明军 王均星 王亚洲 《天津大学学报(自然科学与工程技术版)》 EI CSCD 北大核心 2019年第11期1136-1144,共9页
混凝土坝变形预测是评价大坝运行状态和预测大坝行为的重要方法.但是,混凝土坝的随机荷载和强非线性变形限制了传统多元线性回归模型的应用.而人工神经网络模型则对复杂和高度非线性行为具有良好适应性.针对基于梯度下降法的常规神经网... 混凝土坝变形预测是评价大坝运行状态和预测大坝行为的重要方法.但是,混凝土坝的随机荷载和强非线性变形限制了传统多元线性回归模型的应用.而人工神经网络模型则对复杂和高度非线性行为具有良好适应性.针对基于梯度下降法的常规神经网络模型收敛速度慢和过度拟合等问题,提出了一种基于改进型粒子群优化算法选取极限学习机(ELM-IPSO)最优参数的大坝变形预测模型.针对传统粒子群算法搜索时间长、容易陷入局部最优的特点,采用自适应惯性权重和动态调整学习因子,对粒子群算法进行了改进.研究表明,IPSO算法提高了粒子群优化的全局搜索能力,提高了计算效率.应用IPSO优化ELM模型的初始权值和阈值.通过东江混凝土拱坝的实测资料,验证ELM-IPSO模型的预测性能.将计算结果与BPNN模型、ELM模型和传统ELM-PSO模型的结果进行比较.BPNN模型、ELM模型、ELM-PSO模型和ELM-IPSO模型的平方相关系数R2分别为89.15%、91.13%、93.87%和94.36%.ELM模型的R2大于BPNN模型,说明ELM模型比常规的BPNN模型预测精度更高,泛化性能更好.ELM-PSO模型的预测精度大于ELM模型,说明PSO对ELM的优化在提高预测精度方面具有良好的作用.4个模型中,ELM-IPSO模型的R^2最大,预测精度最高,这表明提出的ELM-IPSO模型能够有效提高混凝土坝变形的预测能力. 展开更多
关键词 混凝土大坝变形 极限学习 BP神经网络 改进的粒子优化算法
下载PDF
基于改进粒子群优化极限学习机的养殖氨态氮含量预测模型 被引量:9
9
作者 徐大明 杜永贵 +1 位作者 孙传恒 周超 《江苏农业科学》 北大核心 2017年第4期183-186,共4页
针对养殖水体氨态氮含量预测准确性低的问题,提出了一种基于改进粒子群算法优化极限学习机的水产养殖氨态氮含量预测模型。引入自适应变异算子改进粒子群算法的搜索性能,利用改进粒子群算法优化极限学习机的初始权值和阈值,最后训练极... 针对养殖水体氨态氮含量预测准确性低的问题,提出了一种基于改进粒子群算法优化极限学习机的水产养殖氨态氮含量预测模型。引入自适应变异算子改进粒子群算法的搜索性能,利用改进粒子群算法优化极限学习机的初始权值和阈值,最后训练极限学习机预测模型求得最优解。将该预测模型应用在小汤山水产品养殖系统进行有效性验证,通过试验发现,与PSO-ELM和普通BP神经网络相比,IPSO-ELM预测氨态氮含量模型有更高的精度和更好的拟合能力。结果表明,基于改进粒子群优化的极限学习机氨态氮含量预测模型简单易懂、预测精度高、易于实现,具有较好的预测性能。 展开更多
关键词 氨态氮预测 粒子算法 变异算子 极限学习
下载PDF
基于金枪鱼群算法优化极限学习机的混凝土抗压强度预测
10
作者 张博吾 耿秀丽 《计算机应用研究》 CSCD 北大核心 2024年第2期444-449,共6页
混凝土抗压强度是建筑结构设计与评价的一个重要指标,它直接关乎建筑的质量与安全。为解决现有机器学习模型对其预测存在预测耗时长、精度不够高,不能很好地满足施工现场对混凝土抗压强度预测实时性与准确性要求的问题,提出一套基于新... 混凝土抗压强度是建筑结构设计与评价的一个重要指标,它直接关乎建筑的质量与安全。为解决现有机器学习模型对其预测存在预测耗时长、精度不够高,不能很好地满足施工现场对混凝土抗压强度预测实时性与准确性要求的问题,提出一套基于新式仿生算法金枪鱼群算法优化极限学习机(TSO-ELM)的混凝土抗压强度预测方法。该方法通过对ELM隐藏层初始参数中的连接权值与偏置值使用TSO进行寻优,有效提升了ELM的预测准确度。在仿真实验部分,通过两组混凝土数据集对ELM的预测速度、TSO的寻优能力、TSO-ELM模型的泛化性逐一进行验证。结果表明,该方法可以有效提高预测的速度与精准度,迭代次数更少,同时具有良好的泛化性,为现场施工及时进行混凝土抗压强度的预测提供了一种新方法。 展开更多
关键词 混凝土 抗压强度 金枪鱼优化算法 极限学习 软测量
下载PDF
粒子群优化核极限学习机的变压器故障诊断 被引量:15
11
作者 裴飞 陈雪振 +1 位作者 朱永利 遇炳杰 《计算机工程与设计》 北大核心 2015年第5期1327-1331,共5页
核极限学习机(kernel-based extreme learning machine,KELM)在分类性能方面优于支持向量机(SVM),但仍存在参数敏感性的缺陷。针对这一缺陷,提出一种结合K折交叉验证(k-fold cross validation,K-CV)与粒子群优化(particle swarm optimiz... 核极限学习机(kernel-based extreme learning machine,KELM)在分类性能方面优于支持向量机(SVM),但仍存在参数敏感性的缺陷。针对这一缺陷,提出一种结合K折交叉验证(k-fold cross validation,K-CV)与粒子群优化(particle swarm optimization,PSO)的KELM分类器参数优化方法,将CV训练所得多个模型的平均准确率作为PSO的适应度评价函数,为KELM的参数优化提供评价标准。将该方法应用于变压器故障诊断中,充分利用数量有限的样本数据,提高KELM的泛化性能。实验结果表明,相比结合网格搜索(grid)的KELM、结合CV和Grid的KELM以及结合PSO的KELM,结合PSO的CV参数优化方法具有更好的性能。 展开更多
关键词 极限学习 粒子优化 交叉验证 变压器故障诊断 参数优化
下载PDF
一种基于量子粒子群优化的极限学习机(英文) 被引量:9
12
作者 逄珊 杨欣毅 林学森 《系统仿真学报》 CAS CSCD 北大核心 2017年第10期2447-2458,共12页
极限学习机(ELM)是一种新型的单隐含层神经网络的训练方法,同传统的基于梯度的网络训练方法相比,具有快速的学习速度和更好的泛化性能。ELM在实际应用中往往需要大量的隐含层神经元,由于随机设定输入权值和偏置值,容易导致病态问题的出... 极限学习机(ELM)是一种新型的单隐含层神经网络的训练方法,同传统的基于梯度的网络训练方法相比,具有快速的学习速度和更好的泛化性能。ELM在实际应用中往往需要大量的隐含层神经元,由于随机设定输入权值和偏置值,容易导致病态问题的出现。为解决上述问题,提出一种应用量子粒子群(QPSO)优化包括隐含层节点个数在内的网络参数的方法。这种优化基于验证集的均方根误差,考虑到了输入权值矩阵的范数。在典型的回归和分类问题上进行试验证明了算法的有效性。 展开更多
关键词 极限学习 单隐含层前馈神经网络 量子粒子 泛化能力
下载PDF
蚁群优化算法协同深度极限学习机的热连轧宽度预测模型
13
作者 李嘉林 高杰 丁敬国 《材料与冶金学报》 CAS 北大核心 2024年第5期497-504,共8页
热连轧粗轧生产过程中,为解决换规格后宽度设定精度低的难题,提出了一种蚁群优化算法协同深度极限学习机(ant colony optimization deep extreme learning machine,ACO-DELM)的热连轧粗轧宽度预测方法.该方法将蚁群优化算法应用于DELM... 热连轧粗轧生产过程中,为解决换规格后宽度设定精度低的难题,提出了一种蚁群优化算法协同深度极限学习机(ant colony optimization deep extreme learning machine,ACO-DELM)的热连轧粗轧宽度预测方法.该方法将蚁群优化算法应用于DELM网络中,以提高其预测精度和泛化能力.先利用数据预处理方法对原始数据进行异常值的剔除和数据归一化.然后,使用蚁群优化算法对DELM的隐藏层节点数、迭代次数进行优化,在隐藏层节点数达到95个、迭代次数为480次时,DELM模型的预测性能最佳,其在预测不同规格带钢平均宽度时,决定系数R^(2)达到0.9989,97.98%的样本点预测误差分布在-7~7 mm.应用结果表明,与传统的深度极限学习机(DELM)、卷积神经网络(CNN)等模型相比,ACO-DELM模型在预测精度和泛化能力上有明显的提升,可有效应用于热轧带钢的平均宽度预测. 展开更多
关键词 热连轧 优化算法 深度极限学习 宽度预测
下载PDF
基于粒子群优化极限学习机的排水管结构状况评价 被引量:9
14
作者 郑茂辉 刘少非 +1 位作者 柳娅楠 李浩楠 《同济大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第4期513-516,551,共5页
基于极限学习机(ELM)和粒子群优化(PSO)算法,建立一个新型排水管道结构性状况评价模型。采用PSO算法优化ELM中的输入权值矩阵和隐含层偏置,改善网络参数随机生成带来的分类精度偏低的问题。以上海市洋山保税港区排水管网为例,对分类器... 基于极限学习机(ELM)和粒子群优化(PSO)算法,建立一个新型排水管道结构性状况评价模型。采用PSO算法优化ELM中的输入权值矩阵和隐含层偏置,改善网络参数随机生成带来的分类精度偏低的问题。以上海市洋山保税港区排水管网为例,对分类器模型进行训练测试,并与ELM分类结果进行对比分析。结果表明,PSO ELM算法以较少的隐含层神经元节点获得更高的分类精度,参数优化提高了模型拟合能力,对于城市排水管道结构性状况分类、判断具有可行性和有效性。 展开更多
关键词 排水管道 结构性状况评价 极限学习 粒子优化
下载PDF
基于粒子群优化极限学习机及电容层析成像的两相流流型及其参数预测 被引量:10
15
作者 张立峰 朱炎峰 《计量学报》 CSCD 北大核心 2020年第12期1488-1493,共6页
提出了一种基于粒子群优化极限学习机及电容层析成像的两相流流型辨识及其参数预测方法。首先,通过粒子群优化极限学习机的连接权值,并使用粒子群优化极限学习机算法对4种典型的油-气两相流流型进行辨识;其次,使用粒子群优化极限学习机... 提出了一种基于粒子群优化极限学习机及电容层析成像的两相流流型辨识及其参数预测方法。首先,通过粒子群优化极限学习机的连接权值,并使用粒子群优化极限学习机算法对4种典型的油-气两相流流型进行辨识;其次,使用粒子群优化极限学习机算法对流型的参数进行预测;最后进行了仿真实验,结果表明,与极限学习机算法相比,粒子群优化极限学习机算法所需隐层节点数更少,流型辨识率更高,其正确辨识率达100%,对4种流型参数预测的最大相对误差为5.24%。 展开更多
关键词 计量学 -气两相流 流型辨识 粒子 极限学习 电容层析成像 参数预测
下载PDF
免疫粒子群优化核极限学习机变压器故障诊断 被引量:3
16
作者 魏巍 马心怡 薛鹏 《长春工业大学学报》 CAS 2020年第5期430-435,共6页
将粒子群优化和人工免疫算法相融合应用于核极限学习机算法的参数优化,进行了相关实验。
关键词 极限学习 粒子优化 人工免疫 变压器故障诊断
下载PDF
改进粒子群-极限学习机模型在面板堆石坝运行期沉降预测中的应用 被引量:5
17
作者 燕乔 高名杨 +1 位作者 梁明浩 王硕 《水电能源科学》 北大核心 2021年第10期110-113,共4页
针对极限学习机(ELM)沉降预测模型中随机权值和阈值导致部分节点无效的问题,引入改进粒子群算法(IPSO)优化极限学习机的参数,构建基于改进粒子群-极限学习机算法的面板堆石坝运行期沉降预测模型,并将其应用于某完建的面板堆石坝运行期... 针对极限学习机(ELM)沉降预测模型中随机权值和阈值导致部分节点无效的问题,引入改进粒子群算法(IPSO)优化极限学习机的参数,构建基于改进粒子群-极限学习机算法的面板堆石坝运行期沉降预测模型,并将其应用于某完建的面板堆石坝运行期沉降预测中。结果表明,与未优化的极限学习机预测模型和统计回归预测模型的拟合预测结果相比,经改进粒子群算法优化后的极限学习机预测模型在测点上的拟合精度更高,且由于引入改进粒子群算法后,极限学习机在满足精度条件下所需预设的隐含层神经元数更少,这可极大地降低模型网络的复杂度,避免模型在训练中出现过拟合现象;三个模型中IPSO-ELM模型的泛化能力更好,预测结果更精确、稳定。 展开更多
关键词 面板堆石坝 改进粒子-极限学习(IPSO-ELM) 运行期 沉降预测模型
下载PDF
基于粒子群算法优化极限学习机的无源目标定位算法 被引量:2
18
作者 傅彬 《计算机应用与软件》 CSCD 2015年第11期325-328,共4页
为了提高目标定位精度,提出一种基于粒子群算法优化极限学习机的无源目标定位算法。首先通过位置信息场采集目标的相关信息,然后利用极限学习机对位置信息场与目标位置之间的非映射关系进行拟合,同时采用粒子群算法对极限学习机参数进... 为了提高目标定位精度,提出一种基于粒子群算法优化极限学习机的无源目标定位算法。首先通过位置信息场采集目标的相关信息,然后利用极限学习机对位置信息场与目标位置之间的非映射关系进行拟合,同时采用粒子群算法对极限学习机参数进行优化,最后在Matlab 2009平台进行仿真对比实验。结果表明,相对于其他目标定位算法,该算法提高了目标定位的精度,更加适合于复杂环境下的目标定位。 展开更多
关键词 位置信息场 目标定位粒子优化算法极限学习
下载PDF
基于粒子群优化极限学习机的睡眠分期方法 被引量:2
19
作者 吴振华 邱倩 《物联网技术》 2021年第9期30-37,共8页
睡眠分期是诊断睡眠障碍等相关疾病的重要依据,如今对睡眠分期的检测不再局限于在专业的睡眠检测机构实现,人们在家中也可以实现,因此,如何提高睡眠分期检测的准确率已成为当前研究的热点。采用心电信号、呼吸信号以及心肺耦合信号进行... 睡眠分期是诊断睡眠障碍等相关疾病的重要依据,如今对睡眠分期的检测不再局限于在专业的睡眠检测机构实现,人们在家中也可以实现,因此,如何提高睡眠分期检测的准确率已成为当前研究的热点。采用心电信号、呼吸信号以及心肺耦合信号进行特征提取,使用PCA和粒子群优化算法(PSO)进行特征选择,将PSO与极限学习机(ELM)相结合对睡眠进行分期,在二类分期上准确率可达91.38%,在三类分期和四类分期上准确率均超过80%,在六类分期上也可以达到76.63%。与隐马尔可夫与BP神经网络的混合模型(HMM-BP)、最小二乘支持向量机(LSSVM)等现有睡眠分期方案相比,文中方案具有一定的优势。同时还比较了支持向量机(SVM)和ELM方法对睡眠分期的准确率,结果均低于结合PSO后的SVM和ELM。实验结果表明,加入PSO算法能够缓解ELM模型过拟合的现象并提高模型对睡眠分类的准确率。 展开更多
关键词 睡眠分期 心电信号 呼吸信号 心肺耦合信号 粒子优化算法 极限学习
下载PDF
粒子群优化混合核极限学习机的构造煤厚度预测方法 被引量:17
20
作者 范君 王新 徐慧 《计算机应用》 CSCD 北大核心 2018年第6期1820-1825,1830,共7页
在构造煤厚度的预测中,针对预测精度不高的问题,提出利用粒子群优化(PSO)算法优化极限学习机(ELM)的方法来对构造煤厚度进行预测。首先,利用主成分分析(PCA)对三维地震属性进行降维处理,在降低地震属性的维数的同时消除变量之间的相关... 在构造煤厚度的预测中,针对预测精度不高的问题,提出利用粒子群优化(PSO)算法优化极限学习机(ELM)的方法来对构造煤厚度进行预测。首先,利用主成分分析(PCA)对三维地震属性进行降维处理,在降低地震属性的维数的同时消除变量之间的相关性。然后,构建全局多项式核函数和局部高斯径向基核函数混合核极限学习机(HKELM)模型,并利用PSO算法优化HKELM的核参数。同时,针对PSO算法存在容易陷入局部最优的问题,在PSO算法中加入模拟退火的思想和随迭代次数减小的惯性权重,以及基于反向学习的变异操作,使PSO算法可以更容易跳出局部极小值点,得到更优结果。此外,为了增强模型的泛化能力,在核函数的基础上加入L2正则项,有效地避免了噪声和异常点对模型泛化性能的影响。最后,将预测模型应用到阳煤集团新景矿区芦南二采区中部15#煤层中,预测得到的采区构造煤厚度与实际地质资料具有较高的一致性。实验结果表明,利用改进PSO算法优化HKELM构建构造煤厚度预测模型的预测误差较小,可以推广用于实际采区的构造煤厚度预测。 展开更多
关键词 主成分分析 粒子优化 核函数 极限学习 构造煤 厚度预测
下载PDF
上一页 1 2 24 下一页 到第
使用帮助 返回顶部