期刊文献+
共找到17篇文章
< 1 >
每页显示 20 50 100
粒子群优化BP算法在电力系统短期负荷预测中的应用 被引量:4
1
作者 傅忠云 《重庆工学院学报》 2007年第19期93-96,共4页
为提高电力系统短期负荷预测的精度,引入一种新型的群智能方法——粒子群优化算法,并将这种智能算法与BP算法相结合,形成了粒子群优化BP算法模型,建立了计及气象因素的短期负荷预测模型.通过具体算例将此模型与单纯的BP模型进行比较,结... 为提高电力系统短期负荷预测的精度,引入一种新型的群智能方法——粒子群优化算法,并将这种智能算法与BP算法相结合,形成了粒子群优化BP算法模型,建立了计及气象因素的短期负荷预测模型.通过具体算例将此模型与单纯的BP模型进行比较,结果表明:该算法具有较高的预测精度,完全能满足实际工程的要求. 展开更多
关键词 粒子算法 bp模型 粒子群优化bp模型 短期负荷预测
下载PDF
基于灰色关联度的粒子群优化BP在辛烷值预测中的应用
2
作者 张愿章 郭伟峰 魏华波 《河南科学》 2012年第6期684-687,共4页
提出了基于改进的灰色关联度的粒子群优化BP神经网络的方法,将其应用到辛烷值预测研究;通过实例分析,并与传统的BP神经网络进行对比,说明该模型的预测精度高、算法稳定、泛化性能好,更适合于生产控制的需要.
关键词 红外光谱分析 改进灰色关联度 粒子群优化bp
下载PDF
粒子群优化BP算法在短期负荷预测中的应用
3
作者 傅忠云 《山东电力高等专科学校学报》 2007年第4期63-66,共4页
电力系统短期负荷预测是电力系统调度运营和用电服务部门的重要日常工作之一,其预测精度直接影响到电力系统运行的安全性、经济性和供电质量。为提高预测精度,本文引入一种新型的群智能方法--粒子群优化算法,并将这种智能算法与BP算法... 电力系统短期负荷预测是电力系统调度运营和用电服务部门的重要日常工作之一,其预测精度直接影响到电力系统运行的安全性、经济性和供电质量。为提高预测精度,本文引入一种新型的群智能方法--粒子群优化算法,并将这种智能算法与BP算法相结合,形成了粒子群优化BP算法模型,建立了计及气象因素的短期负荷预测模型。通过具体算例将此模型与单纯的BP模型进行比较,结果表明:该算法具有较高的预测精度,完全能满足实际工程的要求。 展开更多
关键词 粒子算法 bp模型 粒子群优化bp模型 短期负荷预测
下载PDF
改进粒子群优化BP神经网络粮食产量预测模型 被引量:28
4
作者 宗宸生 郑焕霞 王林山 《计算机系统应用》 2018年第12期204-209,共6页
综合考虑影响粮食产量的多种因素,运用改进的粒子群算法优化BP神经网络的初始权重,建立了适合小样本粮食产量的预测模型.实验表明,与BP神经网络粮食预测模型和PSO-BP神经网络粮食预测模型相比,该模型具有更高的预测精度和较大的适应度.
关键词 改进粒子群优化bp神经网络 惯性权重 学习因子 粮食预测模型 预测精度和适应度
下载PDF
基于粒子群优化算法的PSO-BP海底声学底质分类方法 被引量:13
5
作者 陈佳兵 吴自银 +3 位作者 赵荻能 周洁琼 李守军 尚继宏 《海洋学报》 CAS CSCD 北大核心 2017年第9期51-57,共7页
利用粒子群优化算法(PSO)较强的鲁棒性和全局搜索能力等优点,将PSO算法与BP神经网络相结合,优化了BP神经网络分类时的初始权值和阈值。基于珠江河口三角洲的侧扫声呐图像数据,提取了海底声呐图像中砂、礁石、泥3类典型底质的6种主要特... 利用粒子群优化算法(PSO)较强的鲁棒性和全局搜索能力等优点,将PSO算法与BP神经网络相结合,优化了BP神经网络分类时的初始权值和阈值。基于珠江河口三角洲的侧扫声呐图像数据,提取了海底声呐图像中砂、礁石、泥3类典型底质的6种主要特征向量,利用PSO-BP方法对海底底质进行分类识别。实验表明,3类底质分类精度均大于90%,高于BP神经网络70%左右的分类精度,表明PSO-BP方法可有效应用于海底底质的分类识别。 展开更多
关键词 基于粒子优化算法的bp神经网络 特征向量 粒子算法 底质分类
下载PDF
基于粒子群优化算法的测光红移回归预测 被引量:3
6
作者 穆永欢 邱波 +3 位作者 魏诗雅 宋涛 郑子鹏 郭平 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2019年第9期2693-2697,共5页
星系的红移在天文研究中极其重要,星系测光红移的预测对研究宇宙大尺度结构及演变有着重要的研究意义。利用斯隆巡天项目发布的SDSSDR13的150000个星系的测光及光谱数据进行分析,首先根据颜色特征并基于聚类的方法对星系进行分类,由分... 星系的红移在天文研究中极其重要,星系测光红移的预测对研究宇宙大尺度结构及演变有着重要的研究意义。利用斯隆巡天项目发布的SDSSDR13的150000个星系的测光及光谱数据进行分析,首先根据颜色特征并基于聚类的方法对星系进行分类,由分类结果可知早型星系的占比较大。对比了三种不同的机器学习算法对早型星系进行测光红移回归预测实验,并找出最优的方法。实验中将星系样本中u,g,r,i,z五个波段的测光值以及两两做差得到的10个颜色特征作为输入数据,首先构建BP网络,使用BP算法对星系的测光红移进行回归预测;然后利用遗传算法(GA)优化BP网络各层参数,将优化后的GA-BP算法应用于早型星系的回归预测试验中。考虑到GA算法的复杂操作会影响预测效率,并且粒子群算法(PSO)不仅稳定性高且操作简单,因此将粒子群算法应用到星系样本中早型星系的测光红移回归预测实验中,进而采用粒子群算法优化BP网络(PSO-BP)。实验中将光谱红移作为期望值,采用均方差(MSE)作为误差分析指标来评判三种算法的精度,将PSO-BP回归预测结果与BP网络模型、GA-BP网络模型进行比较。由实验结果可知,BP网络的MSE值为0.00192,GA-BP网络的MSE值0.001728,PSO-BP网络的MSE值为0.001708。实验结果表明,所用到的PSO-BP优化模型在精度上优于BP神经网络模型和GA-BP神经网络模型,分别提高了11.1%和1.2%;在效率上优于传统的K近邻(KNN)测光红移估计算法,克服了KNN算法中遍历所有数据样本进行训练的缺点并且其泛化性能优于其它BP网络优化模型。 展开更多
关键词 测光红移 粒子优化 粒子算法优化bp网络 bp神经网络 GA-bp神经网络
下载PDF
基于QPSO-BP和改进D-S的水电机组振动故障诊断 被引量:6
7
作者 程加堂 段志梅 +1 位作者 艾莉 熊燕 《电力系统保护与控制》 EI CSCD 北大核心 2015年第19期66-71,共6页
为提高水电机组振动故障诊断的准确性,提出了一种基于改进D-S证据理论融合量子粒子群优化BP神经网络(QPSO-BP)的诊断方法。根据水电机组常见的振动故障类型,采用3个惯性权值随机调整的QPSO-BP网络分别对其进行初级诊断,并作为独立证据... 为提高水电机组振动故障诊断的准确性,提出了一种基于改进D-S证据理论融合量子粒子群优化BP神经网络(QPSO-BP)的诊断方法。根据水电机组常见的振动故障类型,采用3个惯性权值随机调整的QPSO-BP网络分别对其进行初级诊断,并作为独立证据体应用于D-S理论的合成之中,实现了基本概率赋值的客观化。针对标准D-S无法合成高度冲突证据的缺陷,通过计算权值矩阵对其进行修正。实例分析表明,和3个初级诊断模型及标准D-S合成法相比,所提方法可以有效识别机组的振动故障,具有较高的诊断准确率。 展开更多
关键词 水电机组 振动 故障诊断 量子粒子群优化bp神经网络 改进D-S证据理论
下载PDF
IPSO-BP算法在半主动悬架控制中的应用 被引量:3
8
作者 刘顺安 胡庆玉 +3 位作者 高春甫 于显利 姚永明 陈延礼 《北京工业大学学报》 EI CAS CSCD 北大核心 2011年第9期1281-1286,共6页
为了改善半主动悬架的性能,提出采用改进的粒子群优化(improved particle swarm optimization,IPSO)-向后传播(back propagation,BP)算法作为半主动悬架自适应控制,该算法将标准粒子群算法进行改进,用以改善粒子群全局收敛性和收敛速度... 为了改善半主动悬架的性能,提出采用改进的粒子群优化(improved particle swarm optimization,IPSO)-向后传播(back propagation,BP)算法作为半主动悬架自适应控制,该算法将标准粒子群算法进行改进,用以改善粒子群全局收敛性和收敛速度,并将改进后的IPSO算法作为BP神经网络的学习算法,用于半主动悬架的自适应控制.自适应控制器采用了双神经网络单元结构,一个作为输入端的控制器,根据路面输入调节半主动悬架阻尼值,另一个作为半主动悬架的辨识器,并进行在线识别.通过该控制器进行半主动悬架自适应控制数值仿真,结果表明,基于该算法的控制器明显改善了汽车的舒适性和平顺性,使得车身的垂向加速度比粒子群优化(particle swarm optimization,PSO)-BP半主动悬架的降低了21.73%,提高了汽车悬架的性能. 展开更多
关键词 半主动悬架 自适应控制 粒子优化(IPSO)-向后传播(bp)算法 粒子优化(IPSO)机制
下载PDF
Inversion of 3D density interface with PSO-BP method 被引量:4
9
作者 ZHANG Dailei ZHANG Chong 《Global Geology》 2016年第1期33-40,共8页
BP( Back Propagation) neural network and PSO( Particle Swarm Optimization) are two main heuristic optimization methods,and are usually used as nonlinear inversion methods in geophysics. The authors applied BP neural n... BP( Back Propagation) neural network and PSO( Particle Swarm Optimization) are two main heuristic optimization methods,and are usually used as nonlinear inversion methods in geophysics. The authors applied BP neural network and BP neural network optimized with PSO into the inversion of 3D density interface respectively,and a comparison was drawn to demonstrate the inversion results. To start with,a synthetic density interface model was created and we used the proceeding inversion methods to test their effectiveness. And then two methods were applied into the inversion of the depth of Moho interface. According to the results,it is clear to find that the application effect of PSO-BP is better than that of BP network. The BP network structures used in both synthetic and field data are consistent in order to obtain preferable inversion results. The applications in synthetic and field tests demonstrate that PSO-BP is a fast and effective method in the inversion of 3D density interface and the optimization effect is evident compared with BP neural network merely,and thus,this method has practical value. 展开更多
关键词 INVERSION 3D density interface Moho interface bp neural network particle swarm optimization
下载PDF
基于PSO与BP神经网络的脱机手写体汉字识别算法 被引量:3
10
作者 岳中彤 《信息化研究》 2018年第2期68-70,共3页
汉字识别的算法研究是模式识别中的热点课题。文章针对脱机手写体汉字提出了一种用PSO算法优化BP神经网络的脱机识别算法。关于BP算法在训练时易出现局部极小化的现象,PSO算法可通过大空间内的搜索能力,在全局中优化BP算法。文章基于粒... 汉字识别的算法研究是模式识别中的热点课题。文章针对脱机手写体汉字提出了一种用PSO算法优化BP神经网络的脱机识别算法。关于BP算法在训练时易出现局部极小化的现象,PSO算法可通过大空间内的搜索能力,在全局中优化BP算法。文章基于粒子群算法优化BP神经网络(PSO-BPNN)研究脱机手写体汉字识别算法,通过Matlab软件对样本数据进行分类仿真。结果表明,PSO优化后的算法具有较高的收敛速度和稳定性,对手写体汉字的识别具有较强的能力。 展开更多
关键词 PSO算法 bp神经网络 粒子算法优化bp神经网络 手写体汉字识别
下载PDF
基于连续小波变换耦合CARS算法的冬小麦冠层叶片含水量估算 被引量:3
11
作者 李铠 常庆瑞 +4 位作者 陈倩 陈晓凯 莫海洋 张耀丹 郑智康 《麦类作物学报》 CAS CSCD 北大核心 2023年第2期251-258,共8页
为实现干旱地区冬小麦冠层叶片含水量的快速测定,以陕西省乾县为研究区,基于野外冬小麦冠层高光谱数据和实测叶片含水量,对原始光谱进行连续小波变换(continuous wavelet transform,CWT)后得到的小波能量系数与实测含水量进行相关性分析... 为实现干旱地区冬小麦冠层叶片含水量的快速测定,以陕西省乾县为研究区,基于野外冬小麦冠层高光谱数据和实测叶片含水量,对原始光谱进行连续小波变换(continuous wavelet transform,CWT)后得到的小波能量系数与实测含水量进行相关性分析;并通过竞争性自适应重加权采样(competitive adaptive reweighted sampling,CARS)过滤冗余变量,筛选与叶片含水量相关性较好的波长变量,作为优选变量集;通过粒子群算法(particle swarm optimization,PSO)对BP神经网络模型进行优化,构建冠层叶片含水量预测模型并进行分析。结果表明,从尺度1到尺度10,小波系数与冬小麦叶片含水量整体相关性先升后降,中等分解尺度在光谱波段去除噪声、提高相关性方面最佳;基于CARS优选变量集所建的两种模型中,BP-PSO模型预测能力明显优于普通BP神经网络模型,其决定系数可达0.82,均方根误差为0.86%,相对误差为0.82%。这说明CWT-CARS-BP-PSO耦合算法在提升相关性、过滤冗余波段、提高模型预测精度方面效果显著,可用于冬小麦叶片含水量预测。 展开更多
关键词 冬小麦 叶片含水量 高光谱 连续小波变换 竞争适应重加权采样 粒子算法PSO优化bp神经网络
下载PDF
蛋鸡设施养殖环境质量评价预测模型构建方法及性能测试 被引量:4
12
作者 李华龙 李淼 +4 位作者 詹凯 刘先旺 杨选将 胡泽林 郭盼盼 《智慧农业(中英文)》 2020年第3期37-47,共11页
蛋鸡设施养殖环境质量对蛋鸡的健康生长和生产性能的提升至关重要。蛋鸡养殖环境是多环境因子相互影响制约的复杂非线性系统,凭借单一的养殖环境参数难以对环境质量做出准确有效的评价。针对上述问题,本研究综合蛋鸡设施养殖环境的温度... 蛋鸡设施养殖环境质量对蛋鸡的健康生长和生产性能的提升至关重要。蛋鸡养殖环境是多环境因子相互影响制约的复杂非线性系统,凭借单一的养殖环境参数难以对环境质量做出准确有效的评价。针对上述问题,本研究综合蛋鸡设施养殖环境的温度、湿度、光照强度、氨气浓度等多个环境影响因子,在布谷鸟搜索算法优化神经网络(CS-BP)预测模型的基础上,构建了改进的CS-BP的蛋鸡设施养殖环境质量评价预测模型。将构建的改进CS-BP预测模型与BP神经网络、遗传算法优化BP神经网络(GA-BP)、粒子群算法优化BP神经网络(PSO-BP)3种深度学习方法进行性能参数分析比对,结果表明:改进CS-BP评价预测模型的平均绝对误差(MAE)、平均相对误差(MAPE)和决定系数(R2)分别为0.0865、0.0159和0.8569,其各项指标性能均优于上述3种对比模型,该模型具有较强的模型泛化能力和较高的预测精度。对改进CS-BP的蛋鸡设施养殖环境质量评价模型进行测试,其分类准确率达0.9333以上。本研究构建的模型可以为蛋鸡设施养殖环境质量提供更加全面有效的科学评价,对实现蛋鸡生产环境的最优控制,促进蛋鸡生产性能的提升具有重要意义。 展开更多
关键词 蛋鸡设施养殖 环境质量评价 布谷鸟搜索算法优化神经网络(CS-bp) 遗传算法优化bp神经网络(GA-bp) 粒子算法优化bp神经网络(PSO-bp) 深度学习 多环境因子
下载PDF
Temperature prediction model for a high-speed motorized spindle based on back-propagation neural network optimized by adaptive particle swarm optimization 被引量:1
13
作者 Lei Chunli Zhao Mingqi +2 位作者 Liu Kai Song Ruizhe Zhang Huqiang 《Journal of Southeast University(English Edition)》 EI CAS 2022年第3期235-241,共7页
To predict the temperature of a motorized spindle more accurately,a novel temperature prediction model based on the back-propagation neural network optimized by adaptive particle swarm optimization(APSO-BPNN)is propos... To predict the temperature of a motorized spindle more accurately,a novel temperature prediction model based on the back-propagation neural network optimized by adaptive particle swarm optimization(APSO-BPNN)is proposed.First,on the basis of the PSO-BPNN algorithm,the adaptive inertia weight is introduced to make the weight change with the fitness of the particle,the adaptive learning factor is used to obtain different search abilities in the early and later stages of the algorithm,the mutation operator is incorporated to increase the diversity of the population and avoid premature convergence,and the APSO-BPNN model is constructed.Then,the temperature of different measurement points of the motorized spindle is forecasted by the BPNN,PSO-BPNN,and APSO-BPNN models.The experimental results demonstrate that the APSO-BPNN model has a significant advantage over the other two methods regarding prediction precision and robustness.The presented algorithm can provide a theoretical basis for intelligently controlling temperature and developing an early warning system for high-speed motorized spindles and machine tools. 展开更多
关键词 temperature prediction high-speed motorized spindle particle swarm optimization algorithm back-propagation neural network ROBUSTNESS
下载PDF
STUDY ON THE METEOROLOGICAL PREDICTION MODEL USING THE LEARNING ALGORITHM OF NEURAL ENSEMBLE BASED ON PSO ALGORITHMS 被引量:4
14
作者 吴建生 金龙 《Journal of Tropical Meteorology》 SCIE 2009年第1期83-88,共6页
Because of the difficulty in deciding on the structure of BP neural network in operational meteorological application and the tendency for the network to transform to an issue of local solution, a hybrid Particle Swar... Because of the difficulty in deciding on the structure of BP neural network in operational meteorological application and the tendency for the network to transform to an issue of local solution, a hybrid Particle Swarm Optimization Algorithm based on Artificial Neural Network (PSO-BP) model is proposed for monthly mean rainfall of the whole area of Guangxi. It combines Particle Swarm Optimization (PSO) with BP, that is, the number of hidden nodes and connection weights are optimized by the implementation of PSO operation. The method produces a better network architecture and initial connection weights, trains the traditional backward propagation again by training samples. The ensemble strategy is carried out for the linear programming to calculate the best weights based on the "east sum of the error absolute value" as the optimal rule. The weighted coefficient of each ensemble individual is obtained. The results show that the method can effectively improve learning and generalization ability of the neural network. 展开更多
关键词 neural network ensemble particle swarm optimization optimal combination
下载PDF
Research on the mining roadway displacement forecasting based on support vector machine theory 被引量:3
15
作者 ZHU Zhen-de LI Hong-bo +2 位作者 SHANG Jian-fei WANG Wei LIU Jin-hui 《Journal of Coal Science & Engineering(China)》 2010年第3期235-239,共5页
In view of the difficulty in supporting the surrounding rocks of roadway 3-411 ofFucun Coal Mine of Zaozhuang Mining Group, a deformation forecasting model was putforward based on particle swarm optimization.The kerne... In view of the difficulty in supporting the surrounding rocks of roadway 3-411 ofFucun Coal Mine of Zaozhuang Mining Group, a deformation forecasting model was putforward based on particle swarm optimization.The kernel function and model parameterswere optimized using particle swarm optimization.It is shown that the forecast result isvery close to the real monitoring data.Furthermore, the PSO-SVM (Particle Swarm Optimization-Support Vector Machine) model is compared with the GM(1,1) model and L-M BPnetwork model.The results show that PSO-SVM method is better in the aspect of predictionaccuracy and the PSO-SVM roadway deformation pre-diction model is feasible for thelarge deformation prediction of coal mine roadway. 展开更多
关键词 coal mine roadway support vector machine particle swarm optimization PSO-SVM forecasting model
下载PDF
A novel internet traffic identification approach using wavelet packet decomposition and neural network 被引量:6
16
作者 谭骏 陈兴蜀 +1 位作者 杜敏 朱锴 《Journal of Central South University》 SCIE EI CAS 2012年第8期2218-2230,共13页
Internet traffic classification plays an important role in network management, and many approaches have been proposed to classify different kinds of internet traffics. A novel approach was proposed to classify network... Internet traffic classification plays an important role in network management, and many approaches have been proposed to classify different kinds of internet traffics. A novel approach was proposed to classify network applications by optimized back-propagation (BP) neural network. Particle swarm optimization (PSO) algorithm was used to optimize the BP neural network. And in order to increase the identification performance, wavelet packet decomposition (WPD) was used to extract several hidden features from the time-frequency information of network traffic. The experimental results show that the average classification accuracy of various network applications can reach 97%. Moreover, this approach optimized by BP neural network takes 50% of the training time compared with the traditional neural network. 展开更多
关键词 neural network particle swarm optimization statistical characteristic traffic identification wavelet packet decomposition
下载PDF
基于机器学习的0Cr17Ni4Cu4Nb不锈钢流变应力预测研究
17
作者 赵礼栋 张又铭 +2 位作者 张继林 窦建明 姚家宝 《钢铁钒钛》 CAS 北大核心 2023年第4期196-204,共9页
以0Cr17Ni4Cu4Nb不锈钢为例,提出一种基于粒子群优化BP神经网络预测流变应力的新模型。以常温下的准静态(0.001 s^(−1))压缩试验数据、四种温度(25、350、500、300℃)和六种应变率(750、1500、2000、2600、3500、4500 s^(−1))的冲击试... 以0Cr17Ni4Cu4Nb不锈钢为例,提出一种基于粒子群优化BP神经网络预测流变应力的新模型。以常温下的准静态(0.001 s^(−1))压缩试验数据、四种温度(25、350、500、300℃)和六种应变率(750、1500、2000、2600、3500、4500 s^(−1))的冲击试验数据为基础,构建了0Cr17Ni4Cu4Nb不锈钢流变应力的随机森林预测模型、粒子群优化随机森林预测模型、Back Propagation(BP)神经网络预测模型以及粒子群优化BP神经网络预测模型,采用统计学的决定系数(R2)、平均绝对误差(MAE)、均方差(MSE)和均方误差平方根(RMSE)四个指标分析评价上述四种模型,得出四种模型预测的综合性能依次是粒子群优化BP神经网络模型、BP神经网络模型、粒子群优化随机森林模型、随机森林模型。粒子群优化BP神经网络模型决定系数R2=0.9997、平均绝对误差MAE=1.5773、均方差MSE=5.5053和均方误差平方根RMSE=2.3463,该模型能够很好预测0Cr17Ni4Cu4Nb不锈钢流变应力。 展开更多
关键词 0Cr17Ni4Cu4Nb不锈钢 流变应力 预测模型 机器学习 粒子群优化bp神经网络
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部