期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
粒子群优化BP算法在电力系统短期负荷预测中的应用 被引量:4
1
作者 傅忠云 《重庆工学院学报》 2007年第19期93-96,共4页
为提高电力系统短期负荷预测的精度,引入一种新型的群智能方法——粒子群优化算法,并将这种智能算法与BP算法相结合,形成了粒子群优化BP算法模型,建立了计及气象因素的短期负荷预测模型.通过具体算例将此模型与单纯的BP模型进行比较,结... 为提高电力系统短期负荷预测的精度,引入一种新型的群智能方法——粒子群优化算法,并将这种智能算法与BP算法相结合,形成了粒子群优化BP算法模型,建立了计及气象因素的短期负荷预测模型.通过具体算例将此模型与单纯的BP模型进行比较,结果表明:该算法具有较高的预测精度,完全能满足实际工程的要求. 展开更多
关键词 粒子算法 bp模型 粒子群优化bp模型 短期负荷预测
下载PDF
粒子群优化BP算法在短期负荷预测中的应用
2
作者 傅忠云 《山东电力高等专科学校学报》 2007年第4期63-66,共4页
电力系统短期负荷预测是电力系统调度运营和用电服务部门的重要日常工作之一,其预测精度直接影响到电力系统运行的安全性、经济性和供电质量。为提高预测精度,本文引入一种新型的群智能方法--粒子群优化算法,并将这种智能算法与BP算法... 电力系统短期负荷预测是电力系统调度运营和用电服务部门的重要日常工作之一,其预测精度直接影响到电力系统运行的安全性、经济性和供电质量。为提高预测精度,本文引入一种新型的群智能方法--粒子群优化算法,并将这种智能算法与BP算法相结合,形成了粒子群优化BP算法模型,建立了计及气象因素的短期负荷预测模型。通过具体算例将此模型与单纯的BP模型进行比较,结果表明:该算法具有较高的预测精度,完全能满足实际工程的要求。 展开更多
关键词 粒子算法 bp模型 粒子群优化bp模型 短期负荷预测
下载PDF
Research on the mining roadway displacement forecasting based on support vector machine theory 被引量:3
3
作者 ZHU Zhen-de LI Hong-bo +2 位作者 SHANG Jian-fei WANG Wei LIU Jin-hui 《Journal of Coal Science & Engineering(China)》 2010年第3期235-239,共5页
In view of the difficulty in supporting the surrounding rocks of roadway 3-411 ofFucun Coal Mine of Zaozhuang Mining Group, a deformation forecasting model was putforward based on particle swarm optimization.The kerne... In view of the difficulty in supporting the surrounding rocks of roadway 3-411 ofFucun Coal Mine of Zaozhuang Mining Group, a deformation forecasting model was putforward based on particle swarm optimization.The kernel function and model parameterswere optimized using particle swarm optimization.It is shown that the forecast result isvery close to the real monitoring data.Furthermore, the PSO-SVM (Particle Swarm Optimization-Support Vector Machine) model is compared with the GM(1,1) model and L-M BPnetwork model.The results show that PSO-SVM method is better in the aspect of predictionaccuracy and the PSO-SVM roadway deformation pre-diction model is feasible for thelarge deformation prediction of coal mine roadway. 展开更多
关键词 coal mine roadway support vector machine particle swarm optimization PSO-SVM forecasting model
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部