期刊文献+
共找到279篇文章
< 1 2 14 >
每页显示 20 50 100
基于粒子群径向基神经网络的矿井突水水源判别 被引量:15
1
作者 汪嘉杨 李祚泳 +1 位作者 张雪乔 丁恒康 《安全与环境工程》 CAS 北大核心 2013年第5期118-121,共4页
以多项地下水化学组分指标作为判别因子,采用粒子群算法优化径向基函数神经网络中的参数,建立了最优结构的基于粒子群径向基函数神经网络的矿井突水水源判别模型,将此模型应用于实例分析中,并与其他方法进行了比较分析。结果表明:基于... 以多项地下水化学组分指标作为判别因子,采用粒子群算法优化径向基函数神经网络中的参数,建立了最优结构的基于粒子群径向基函数神经网络的矿井突水水源判别模型,将此模型应用于实例分析中,并与其他方法进行了比较分析。结果表明:基于粒子群径向基函数神经网络的矿井突水水源判别模型的判别结果具有客观性和实用性,避免了权重分配等人为因素的干扰;与传统最小二乘法的RBF神经网络相比,其精度更高,优化结果更为合理,具有较强的突水水源判别能力,可为矿井突水水源判别提供了一条新途径。 展开更多
关键词 矿井 突水水源 水质判别 径向函数 神经网络 粒子算法
下载PDF
基于改进的粒子群径向基神经网络的目标识别 被引量:5
2
作者 袁艳 叶俊浩 苏丽娟 《计算机应用》 CSCD 北大核心 2018年第A01期6-8,23,共4页
为了提高径向基(RBF)神经网络对航拍影像目标的识别率,提出了一种权重改进的粒子群优化(PSO)算法优化径向基神经网络,进行目标识别。首先,运用权重改进的PSO算法求解RBF神经网络隐含层中心,获取优化的径向基神经网络的权值和阈值;合理... 为了提高径向基(RBF)神经网络对航拍影像目标的识别率,提出了一种权重改进的粒子群优化(PSO)算法优化径向基神经网络,进行目标识别。首先,运用权重改进的PSO算法求解RBF神经网络隐含层中心,获取优化的径向基神经网络的权值和阈值;合理地选择待识别目标的样本图像;最后,采用训练过的径向基神经网络对航拍疑似目标图像进行识别。分别采用该算法、经正交最小二乘(OLS)算法和基本PSO算法优化的RBF神经网络对航拍影像进行疑似目标提取和识别,实验结果表明,所提算法对隐含层节点较少的RBF神经网络,识别正确率达到98%,识别效果最好。 展开更多
关键词 粒子优化算法 径向 神经网络 识别
下载PDF
混合粒子群径向基神经网络的短期负荷预测的应用
3
作者 李如琦 邓国良 陈铁洲 《昆明理工大学学报(理工版)》 CAS 北大核心 2010年第6期71-74,80,共5页
电力短期负荷预测的结果对电力系统的经济效益具有重要影响.为了克服基本粒子群(Particle Swarm Optimization,PSO)算法收敛精度不高、易陷入局部最优的缺点,提出一种将自然选择和变异结合的混合粒子群(Hybrid Particle Swarm Optimizat... 电力短期负荷预测的结果对电力系统的经济效益具有重要影响.为了克服基本粒子群(Particle Swarm Optimization,PSO)算法收敛精度不高、易陷入局部最优的缺点,提出一种将自然选择和变异结合的混合粒子群(Hybrid Particle Swarm Optimization,HPSO)算法,可以保持种群的多样性,有效地避免粒子早熟,并利用混合粒子群算法优化径向基神经网络的权值,最后将优化好的径向基神经网络进行广西某市的短期电力负荷预测.计算结果表明,该算法收敛速度快,并达到了提高预测精度和改善网络性能的要求. 展开更多
关键词 径向神经网络 粒子算法 适应值 短期负荷预测
下载PDF
自动驾驶电动车辆基于参数预测的径向基函数神经网络自适应控制 被引量:1
4
作者 陈志勇 李攀 +1 位作者 叶明旭 林歆悠 《中国机械工程》 EI CAS CSCD 北大核心 2024年第6期982-992,共11页
针对具有不确定性的自动驾驶电动车辆的运动控制问题,提出了一种基于参数预测的径向基函数(RBF)神经网络自适应协调控制方案。首先,考虑系统参数的不确定性及外部干扰的影响,利用预瞄方法建立可表征车辆循迹跟车行为的动力学模型;其次,... 针对具有不确定性的自动驾驶电动车辆的运动控制问题,提出了一种基于参数预测的径向基函数(RBF)神经网络自适应协调控制方案。首先,考虑系统参数的不确定性及外部干扰的影响,利用预瞄方法建立可表征车辆循迹跟车行为的动力学模型;其次,采用RBF神经网络补偿器对系统不确定性进行自适应补偿,设计车辆横纵向运动的广义协调控制律;之后,考虑前车车速及道路曲率影响,以车辆在循迹跟车控制过程中的能耗及平均冲击度最小为优化目标,利用粒子群优化(PSO)算法对协调控制律中的增益参数K进行滚动优化,并最终得到一系列优化后的样本数据;在此基础上,设计、训练一个反向传播(BP)神经网络,实现对广义协调控制律中增益参数K的实时预测,以保证车辆的经济性及乘坐舒适性。仿真结果证实了所提控制方案的有效性。 展开更多
关键词 自动驾驶电动车辆 不确定性 径向函数神经网络 粒子优化算法 参数预测
下载PDF
径向基函数神经网络指导的粒子群优化算法求解多峰优化问题 被引量:3
5
作者 张潇 宋威 《小型微型计算机系统》 CSCD 北大核心 2023年第11期2529-2537,共9页
面对多峰优化问题粒子群优化算法因多样性不足和搜索动作选取不合理,难以找到问题的全局最优解.为此本文提出一种径向基函数神经网络指导的粒子群优化算法.首先设计子群划分方法,将种群划分成多个子群,子群中心作为子群粒子的学习目标,... 面对多峰优化问题粒子群优化算法因多样性不足和搜索动作选取不合理,难以找到问题的全局最优解.为此本文提出一种径向基函数神经网络指导的粒子群优化算法.首先设计子群划分方法,将种群划分成多个子群,子群中心作为子群粒子的学习目标,指导其搜索.该方法充分考虑种群多样性,选择能代表子群搜索特性的粒子作为子群中心,并使之远离存在的中心,通过选择合适的子群中心,实现子群划分.不同子群粒子在各自子群中心指导下搜索,呈现多样的搜索特性.其次,利用子群中心设置隐藏层节点,并在输出层输出粒子加速系数的调整动作.最后引入强化学习来训练网络.在CEC2013的15个多峰函数上开展实验,结果表明本文方法明显提高了多峰优化问题的求解精度. 展开更多
关键词 径向函数神经网络 粒子优化算法 学习目标 加速系数 多峰优化
下载PDF
机车牵引齿轮系统混沌运动的径向基函数神经网络控制
6
作者 卫晓娟 陶幸 +3 位作者 李静 李宁洲 何正义 周方伟 《应用技术学报》 2024年第2期215-222,共8页
针对HXD2牵引齿轮系统运行性能监控需求,建立了单自由度牵引齿轮系统动力学模型并结合分岔图、相图和Poincaré截面图分别分析了阻尼系数、啮合刚度的变化对系统周期性响应的影响。基于径向基函数神经网络设计了混沌控制器,同时控... 针对HXD2牵引齿轮系统运行性能监控需求,建立了单自由度牵引齿轮系统动力学模型并结合分岔图、相图和Poincaré截面图分别分析了阻尼系数、啮合刚度的变化对系统周期性响应的影响。基于径向基函数神经网络设计了混沌控制器,同时控制器的参数用量子粒子群算法进行优化,并通过对阻尼系数施加微幅扰动,将系统混沌运动控制为稳定的周期运动。 展开更多
关键词 机车牵引齿轮 径向函数神经网络 量子粒子算法 混沌控制
下载PDF
基于改进SSA结合模糊RBF神经网络的悬臂梁振动主动控制
7
作者 缑新科 曹群 杨娇 《计算机与数字工程》 2024年第9期2659-2666,共8页
随着航空航天事业的发展,为了节省燃料,同时提高航天器速度,航天器采用更轻的材料来减少质量。然而,此举也引入了柔性振动,灵活的振动增加了姿态控制的时间,导致姿态精度控制不尽如人意。因此,有效抑制柔性振动以实现高精度姿态控制非... 随着航空航天事业的发展,为了节省燃料,同时提高航天器速度,航天器采用更轻的材料来减少质量。然而,此举也引入了柔性振动,灵活的振动增加了姿态控制的时间,导致姿态精度控制不尽如人意。因此,有效抑制柔性振动以实现高精度姿态控制非常重要。论文以柔性压电悬臂梁作被控对象,并利用压电薄膜(Polyvinylidene Fluoride,PVDF)作传感器和致动器,分析其振动的控制问题。基于PID和模糊理论的局限性,结合模糊控制器能模仿专家经验和径向基神经网络(Radial Basis Function Network,RBFNN)善于学习的优点,设计了模糊径向基(Fuzzy Radial Basis Function,FRBF)神经网络控制器来抑制悬臂梁的振动,并采用混沌映射的种群初始化策略、疯狂算子的领导者位置更新策略、精英保留及动态惯性权重的追随者位置更新策略改进的樽海鞘群算法(Salp Swarm Algorithm,SSA)来优化模糊神经网络权值。将改进后的控制方法在Matlab软件环境下进行了数值仿真,仿真结果表明,应用改进的模糊径向基神经网络控制器可以有效地提升主动控制的振动效果。 展开更多
关键词 悬臂梁 振动主动控制 模糊径向神经网络 樽海鞘算法
下载PDF
基于改进的RBF神经网络倾角传感器温度补偿方法研究
8
作者 宋启 秦刚 +3 位作者 闫少雄 李佳泽 汪林峰 王静静 《传感器与微系统》 CSCD 北大核心 2024年第11期6-9,共4页
针对MEMS倾角传感器零位温度漂移问题,提出了粒子群优化(PSO)算法和遗传算法(GA)相结合优化径向基函数(RBF)神经网络的补偿方法,克服了RBF神经网络收敛慢、泛用性低的缺陷。结果表明:该方法能够有效地消除温度对MEMS倾角传感器输出的影... 针对MEMS倾角传感器零位温度漂移问题,提出了粒子群优化(PSO)算法和遗传算法(GA)相结合优化径向基函数(RBF)神经网络的补偿方法,克服了RBF神经网络收敛慢、泛用性低的缺陷。结果表明:该方法能够有效地消除温度对MEMS倾角传感器输出的影响。相较于RBF神经网络模型,最大相对误差(MRE)减小了21.03%,均方根误差(RMSE)减小了23.54%,温度漂移得到明显改善,提高了倾角传感器的稳定性与准确性。 展开更多
关键词 倾角传感器 温度补偿 径向函数神经网络 粒子优化算法 遗传算法
下载PDF
基于粒子群优化RBF神经网络轴承故障诊断研究 被引量:2
9
作者 郭阳恒 张永富 《信息与电脑》 2023年第3期89-92,共4页
轴承是当代机械设备中一种重要零部件。轴承故障是机械设备故障的来源之一,因此对轴承故障的诊断研究具有重要意义。文章提出了一种基于粒子群优化径向基函数(Radial Basis Function,RBF)神经网络的算法,先用小波包分解将源信号分解成... 轴承是当代机械设备中一种重要零部件。轴承故障是机械设备故障的来源之一,因此对轴承故障的诊断研究具有重要意义。文章提出了一种基于粒子群优化径向基函数(Radial Basis Function,RBF)神经网络的算法,先用小波包分解将源信号分解成独立信号源,再构建独立特征值,将特征值输入RBF和改进后的RBF中识别故障。实验结论表明,改进后的算法有较好的故障诊断能力。 展开更多
关键词 小波包分解 径向函数(RBF)神经网络 粒子算法 故障诊断
下载PDF
基于SOM特征聚类及RBF神经网络的电力负荷预测方法研究 被引量:1
10
作者 郝文斌 孟志高 +3 位作者 张勇 谢波 彭攀 卫佳奇 《电力需求侧管理》 2024年第2期49-54,共6页
为了提高电力系统负荷预测的精度,维护电力系统运行的安全稳定性,提出一种基于特征向量的自组织映射聚类和改进的径向基函数神经网络相结合的电力负荷预测模型。通过提取能够体现每日电力负荷特性的特征向量,对样本进行聚类,采用具有相... 为了提高电力系统负荷预测的精度,维护电力系统运行的安全稳定性,提出一种基于特征向量的自组织映射聚类和改进的径向基函数神经网络相结合的电力负荷预测模型。通过提取能够体现每日电力负荷特性的特征向量,对样本进行聚类,采用具有相似特征的数据作为神经网络的训练样本,提高了样本规律性。采用粒子群算法(particle swarm optimization,PSO)修正神经网络粒子群速度及位置,以克服梯度下降、局部最优等问题对网络预测精度的影响。基于某地配电网电力负荷数据,验证了所提模型的有效性及良好的适应性。 展开更多
关键词 负荷预测 自组织映射聚类 径向函数神经网络 粒子优化算法
下载PDF
基于粒子群优化算法优化反向传播神经网络构建冷藏草鱼新鲜度的近红外光谱预测模型 被引量:3
11
作者 张沁宇 胡志刚 +4 位作者 徐子健 王子豪 蒋亚军 付丹丹 陈艳 《食品安全质量检测学报》 CAS 北大核心 2023年第22期200-209,共10页
目的 基于机器学习算法构建冷藏草鱼新鲜度的近红外光谱预测模型。方法 采集连续冷藏6d的草鱼片的新鲜度指标,并进行方差分析。选择受冷藏天数影响最大的指标—总挥发性盐基氮(total volatile basic nitrogen,TVB-N)进行定量预测。运用... 目的 基于机器学习算法构建冷藏草鱼新鲜度的近红外光谱预测模型。方法 采集连续冷藏6d的草鱼片的新鲜度指标,并进行方差分析。选择受冷藏天数影响最大的指标—总挥发性盐基氮(total volatile basic nitrogen,TVB-N)进行定量预测。运用x-y距离结合的样本划分(samplesetpartitioningbasedonjointx-y distance,SPXY)方法进行数据集的划分,并采用正交信号校正法(orthogonalsignalcorrection,OSC)、Savitzky-Golay(SG)、一阶导数及其组合算法进行光谱预处理。再运用竞争性自适应重加权采样(competitive adaptivereweightedsampling,CARS)、连续投影算法(successiveprojectionsalgorithm,SPA)、主成分分析(principal component analysis, PCA)对光谱变量进行选择和降维。最后结合偏最小二乘回归(partial least squares regression,PLSR)、反向传播(backpropagation,BP)神经网络和粒子群优化算法(particleswarmoptimization,PSO)优化BP神经网络(PSO-BP),建立草鱼(Ctenopharyngodonidella)片新鲜度定量预测模型。结果 各线性和非线性模型均得到了良好的预测效果,预测集相关系数均超过了0.95。PLSR表现较为稳定, BP神经网络虽提高了校正集预测性能,但是预测集性能不如PLSR。PSO-BP既保证了校正集预测性能,也提高了预测集性能。基于OSC+D1预处理和CARS变量选择后的PSO-BP模型性能最优(R2P=0.987,预测集的均方根误差为0.108,相对分析误差为7.778)。结论 基于PSO-BP算法和近红外光谱的定量预测模型可以很好地预测冷藏鱼肉的新鲜度指标。 展开更多
关键词 近红外光谱 冷藏 草鱼 新鲜度 总挥发性盐 粒子优化算法 反向传播神经网络 正交信号校正法
下载PDF
基于改进粒子群-径向基神经网络模型的短期电力负荷预测 被引量:26
12
作者 师彪 李郁侠 +3 位作者 于新花 闫旺 何常胜 孟欣 《电网技术》 EI CSCD 北大核心 2009年第17期180-184,共5页
为了准确、快速、高效地预测电网短期负荷,提出了改进的粒子群–径向基神经网络算法。用改进的粒子群算法训练径向基神经网络,实现了径向基函数神经网络的参数优化。建立了短期电力负荷预测模型,综合考虑气象、天气、日期类型等影响负... 为了准确、快速、高效地预测电网短期负荷,提出了改进的粒子群–径向基神经网络算法。用改进的粒子群算法训练径向基神经网络,实现了径向基函数神经网络的参数优化。建立了短期电力负荷预测模型,综合考虑气象、天气、日期类型等影响负荷的因素进行短期负荷预测。算例结果表明,该算法优于径向基神经网络法和粒子群–径向基网络算法,克服了径向基网络和粒子群优化方法的缺点,改善了径向基神经网络的泛化能力,输出稳定,预测精度高,收敛速度快,平均百分比误差可控制在1.2%以内。 展开更多
关键词 负荷预测 改进粒子-径向神经网络模型 泛化能力 预测精度
下载PDF
基于量子自适应粒子群优化径向基函数神经网络的网络流量预测 被引量:33
13
作者 郭通 兰巨龙 +1 位作者 李玉峰 江逸茗 《电子与信息学报》 EI CSCD 北大核心 2013年第9期2220-2226,共7页
该文提出一种量子自适应粒子群优化算法,该算法中,粒子位置的编码采用量子比特实现,利用粒子飞行轨迹信息动态更新量子比特的状态,并引入量子非门实现变异操作以避免陷入局部最优。用该算法训练神经网络,实现了径向基函数(RBF)神经网络... 该文提出一种量子自适应粒子群优化算法,该算法中,粒子位置的编码采用量子比特实现,利用粒子飞行轨迹信息动态更新量子比特的状态,并引入量子非门实现变异操作以避免陷入局部最优。用该算法训练神经网络,实现了径向基函数(RBF)神经网络参数优化,建立了基于量子自适应粒子群优化RBF神经网络算法的网络流量预测模型。对真实网络流量的预测结果表明,该方法的收敛速度和预测精度均要优于传统RBF神经网络法、粒子群-RBF神经网络法、混合粒子群-RBF神经网络法和自适应粒子群-RBF神经网络法,并且预测效果不易受时间尺度变化的影响。 展开更多
关键词 径向函数神经网络 自适应粒子优化 量子比特 流量预测
下载PDF
自适应变系数粒子群和径向基神经网络在短期电价预测中的应用(英文) 被引量:3
14
作者 师彪 李郁侠 +3 位作者 于新花 闫旺 李娜 孟欣 《电网技术》 EI CSCD 北大核心 2010年第1期98-106,共9页
分析了传统的粒子群优化(particle swarm optimization,PSO)算法和径向基(radial basis function,RBF)神经网络的优缺点,提出一种自适应变系数粒子群优化算法(adaptive variable coefficients particle swarm optimizer,AVCPSO)。该算法... 分析了传统的粒子群优化(particle swarm optimization,PSO)算法和径向基(radial basis function,RBF)神经网络的优缺点,提出一种自适应变系数粒子群优化算法(adaptive variable coefficients particle swarm optimizer,AVCPSO)。该算法与RBF神经网络结合形成自适应变系数粒子群-径向基(AVCPSO-RBF)神经网络混合优化算法。基于此优化算法,建立了短期电价预测模型,并利用贵州电网历史数据进行短期电价预测。仿真计算结果表明,AVCPSO-RBF混合优化算法在短期电价预测中优于传统RBF神经网络法和PSO-RBF神经网络方法,克服了上述2种方法的缺点,改善了RBF神经网络的泛化能力,具有输出稳定性好、预测精度高、收敛速度快等特点,使用该方法得到的各日预测电价的平均百分比误差可控制在2%以内,平均绝对误差最大值为1.652RMB/MW·h。 展开更多
关键词 电价预测 粒子优化算法:径向神经网络 混合优化算法 泛化能力
下载PDF
自适应变系数粒子群—径向基神经网络模型在负荷预测中的应用 被引量:5
15
作者 师彪 李郁侠 +3 位作者 于新花 李娜 闫旺 孟欣 《计算机应用》 CSCD 北大核心 2009年第9期2454-2458,共5页
为了提高短期电力负荷预测精度,提出了一种自适应变系数粒子群—径向基函数神经网络混合优化算法(AVCTPO-RBF)。实现了径向基神经网络参数优化。建立了基于该优化算法的短期负荷预测模型,利用贵州电网历史数据进行短期负荷预测。仿真表... 为了提高短期电力负荷预测精度,提出了一种自适应变系数粒子群—径向基函数神经网络混合优化算法(AVCTPO-RBF)。实现了径向基神经网络参数优化。建立了基于该优化算法的短期负荷预测模型,利用贵州电网历史数据进行短期负荷预测。仿真表明,该方法的收敛速度和预测精度优于传统径向基神经网络方法和粒子群—RBF神经网络方法及基于混沌理论的神经网络模型,该优化算法克服了径向基神经网络和传统的粒子群优化方法的缺点,改善了径向基神经网络的泛化能力,提高了贵州电网短期负荷预测的精度,各日预测负荷的平均百分比误差可控制在1.7%以内。该算法可有效用于电力系统的短期负荷预测。 展开更多
关键词 短期负荷预测 自适应变系数粒子 泛化能力 径向神经网络
下载PDF
改进粒子群优化Takagi-Sugeno模糊径向基函数神经网络的非线性系统建模 被引量:3
16
作者 李丽娜 甘晓晔 +1 位作者 徐攀峰 马俊 《计算机应用》 CSCD 北大核心 2014年第5期1341-1344,1372,共5页
针对复杂非线性系统建模的难点问题,提出了一种基于改进的粒子群优化算法(PSO)优化的T-S模糊径向基函数(RBF)神经网络的新型系统建模算法。该算法将T-S模糊模型良好的可解释性及RBF神经网络的自学习能力相结合,构成T-S模糊RBF神经网络... 针对复杂非线性系统建模的难点问题,提出了一种基于改进的粒子群优化算法(PSO)优化的T-S模糊径向基函数(RBF)神经网络的新型系统建模算法。该算法将T-S模糊模型良好的可解释性及RBF神经网络的自学习能力相结合,构成T-S模糊RBF神经网络用于系统建模,并采用动态调整惯性权重的改进的PSO算法结合递推最小二乘算法实现网络参数的优化调整。首先,利用所提算法进行了非线性多维函数的逼近仿真,仿真结果均方差(MSE)为0.00017,绝对值误差不大于0.04,逼近精度较高;又将该算法用于建立动态流量软测量模型,并进行了相关的实验研究,动态流量测量结果平均绝对误差小于0.15 L/min,相对误差为1.97%,基本满足测量要求,并优于已有算法。上述仿真及实验研究结果表明,所提算法对于复杂非线性系统具有较高的建模精度和良好的自适应性。 展开更多
关键词 动态流量 软测量 T-S模糊模型 径向函数神经网络 粒子优化算法
下载PDF
基于自适应粒子群优化径向基函数神经网络的语音转换 被引量:8
17
作者 张玲华 姚绍芹 解伟超 《数据采集与处理》 CSCD 北大核心 2015年第2期336-343,共8页
语音转换是指在保持源说话人语义内容不变的前提下,通过改变源说话人的个性特征,使其听起来像目标说话人的语音。本文提出一种自适应粒子群优化算法训练径向基函数神经网络进行语音特征建模,以获取说话人谱包络的映射关系;此外,考虑到... 语音转换是指在保持源说话人语义内容不变的前提下,通过改变源说话人的个性特征,使其听起来像目标说话人的语音。本文提出一种自适应粒子群优化算法训练径向基函数神经网络进行语音特征建模,以获取说话人谱包络的映射关系;此外,考虑到说话人谱包络参数与基频有着密切的联系,利用基于径向基函数神经网络的联合谱包络基频变换方法,将谱包络参数与基频联合进行建模和转换,使得转换后的基频含有更多的说话人个性特征。最后,运用主、客观方法对获得的转换语音进行性能测试。实验表明,与主流的基于高斯混合模型的语音转换相比,使用自适应粒子群优化的径向基函数神经网络方法能够获得更好的转换性能,且更加适用于男声到女声的转换。 展开更多
关键词 语音转换 径向函数神经网络 自适应粒子优化 高斯混合模型
下载PDF
基于粒子群优化径向基神经网络的水质指标预测 被引量:4
18
作者 操建华 林宏伟 张实诚 《煤炭技术》 CAS 北大核心 2010年第2期201-204,共4页
为掌握丹江口库区水质未来的变化趋势以及预防污染事件的发生,建立了一个水质指标的预测模型。利用库区某断面自动检测站的水质指标实测参数作为学习样本,选取化学需养量(COD)、生化需养量(BOD)、PH值、氨氮(NH3-N)、总磷(TP)、总氮(TN... 为掌握丹江口库区水质未来的变化趋势以及预防污染事件的发生,建立了一个水质指标的预测模型。利用库区某断面自动检测站的水质指标实测参数作为学习样本,选取化学需养量(COD)、生化需养量(BOD)、PH值、氨氮(NH3-N)、总磷(TP)、总氮(TN)等指标作为预测参数,运用粒子群算法优化RBF神经网络的预测模型,对丹江口库区水质指标进行预测,结果表明,利用基于粒子群优化径向基神经网络对水质指标预测具有较高的精度,相对误差小于7%,该模型具有良好的可行性和有效性。 展开更多
关键词 粒子 径向函数 神经网络 水质 预测 丹江口水库
下载PDF
基于量子粒子群-径向基神经网络模型的风速预测 被引量:3
19
作者 赵高强 傅瓅 《内蒙古大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第1期27-31,共5页
风速预测对风电场和电力系统的运行都具有重要意义.为了提高风速预测的精度,提出了一种基于量子粒子群-径向基神经网络模型,在确定网络隐含层节点数后,将RBF网络的参数编码成优化算法中的粒子个体进行优化,在全局空间搜索最优适应值的参... 风速预测对风电场和电力系统的运行都具有重要意义.为了提高风速预测的精度,提出了一种基于量子粒子群-径向基神经网络模型,在确定网络隐含层节点数后,将RBF网络的参数编码成优化算法中的粒子个体进行优化,在全局空间搜索最优适应值的参数.用优化后的神经网络进行风速预测,实例结果表明该算法在预测速度和精度上都得到了提高. 展开更多
关键词 量子粒子算法 径向函数 风速预测 神经网络
下载PDF
基于PSO-RBF神经网络的力学参数反演分析应用
20
作者 任怡桦 《新材料·新装饰》 2024年第6期1-4,共4页
岩土力学参数的合理确定是数值模拟分析的关键,然而参数的确定一直是工程界中的难题。为了合理地获取力学参数值,文章采用径向基神经网络对力学参数进行反演,结合工程条件,采用均匀试验法设计参数样本组,利用有限元分析计算结果构造反... 岩土力学参数的合理确定是数值模拟分析的关键,然而参数的确定一直是工程界中的难题。为了合理地获取力学参数值,文章采用径向基神经网络对力学参数进行反演,结合工程条件,采用均匀试验法设计参数样本组,利用有限元分析计算结果构造反演样本库,通过与网络模型的预测输出进行对比,发现径向基神经网络对样本个数的要求较低,且在计算输出精度上和稳定性上更具有优势;后结合粒子群算法,以实际监测位移与计算位移的误差为目标函数进行力学参数反演,并将结果代入数值模型中进行正分析,且与监测位移进行比对,结果表明反演的力学参数精度较高,满足工程要求,成果可供类似工程参考。 展开更多
关键词 径向神经网络 粒子算法 位移反分析 监测数据
下载PDF
上一页 1 2 14 下一页 到第
使用帮助 返回顶部