This paper proposes an efficient method for optimal power flow solution (OPF) using particle swarm optimization (PSO) technique. The objective of the proposed method is to find the steady state operation point in ...This paper proposes an efficient method for optimal power flow solution (OPF) using particle swarm optimization (PSO) technique. The objective of the proposed method is to find the steady state operation point in a power system which minimizes the fuel cost, while maintaining an acceptable system performance in terms of limits on generator power, line flow limits and voltage limits. In order to improvise the performance of the conventional PSO (cPSO), the fine tuning parameters- the inertia weight and acceleration coefficients are formulated in terms of global-local best values of the objective function. These global-local best inertia weight (GLBestlW) and global-local best acceleration coefficient (GLBestAC) are incorporated into PSO in order to compute the optimal power flow solution. The proposed method has been tested on the standard IEEE 30 bus test system to prove its efficacy. The results are compared with those obtained through cPSO. It is observed that the proposed algorithm is computationally faster, in terms of the number of load flows executed and provides better results than the conventional heuristic techniques.展开更多
Semiarid loess hilly areas in China are enduring a series of environmental conflicts between urban expansion,cultivated land conservation,soil erosion and water shortage,and require land use allocation to reconcile th...Semiarid loess hilly areas in China are enduring a series of environmental conflicts between urban expansion,cultivated land conservation,soil erosion and water shortage,and require land use allocation to reconcile these environmental conflicts.We argue that the optimized spatial allocation of rural land use can be achieved by a Particle Swarm Optimization (PSO) model in conjunction with multi-objective optimization techniques.Our study focuses on Yuzhong County of Gangsu Province in China,a typical catchment on the Loess Plateau,and proposes a land use spatial optimization model.The model maximizes land use suitability and spatial compactness based on a variety of constraints,e.g.optimal land use structure and restrictive areas,and employs an improved PSO algorithm equipped with a determinant initialization method and a dynamic weighted aggregation (DWA) method to obtain the optimized land use spatial pattern.The results suggest that (1) approximately 4% of land use should be reallocated and these changes would alleviate the environmental conflicts in the study area;(2) the major reshuffling is slope farmland and newly added construction and cultivated land,whereas the unchanged areas are largely forests and basic farmland;and (3) the PSO is capable of optimizing rural land use allocation,and the determinant initialization method and DWA can improve the performance of the PSO.展开更多
The problem of maximizing system reliability through component reliability choices and component redundancy is called tell-ability-redundancy allocation problem (RAP), and it is a difficult but realistic nonlinear m...The problem of maximizing system reliability through component reliability choices and component redundancy is called tell-ability-redundancy allocation problem (RAP), and it is a difficult but realistic nonlinear mixed-integer optimization prob- lem. For the RAP. we pay attention to an improved particle swarm optimization (IPSO), and introduce four hybrid approaches for combining the IPSO with other conventional search techniques, such as harmony search (HS) and LXPM (a real coded GA). The basic structure of the hybrid approaches includes two phases. After devising an initial solution by the HS or LXPM technique in the first phase, the IPSO performs an optimal search in the next phase. In addition, a new procedure by using golden search, named GS, is developed for further improving the solutions obtained by IPSO. Consequently, four ISPO-based hybrid approaches are proposed including HS-IPSO, LXPM-IPSO, HS-IPSO-GS, and LXPM-IPSO-GS. In order to validate the per-formance of proposed approaches, five nonlinear mixed-integer RAPs are investigated where both the number of re- dundancy components and the corresponding component reliability in each subsystem are to be decided simultaneously. As shown, the proposed approaches are all superior in terms of both optimal solutions and robustness to those by IPSO. Especially the pro-posed LXPM-IPSO-GS has shown more excellent performance than other typical approaches in the literature.展开更多
文摘This paper proposes an efficient method for optimal power flow solution (OPF) using particle swarm optimization (PSO) technique. The objective of the proposed method is to find the steady state operation point in a power system which minimizes the fuel cost, while maintaining an acceptable system performance in terms of limits on generator power, line flow limits and voltage limits. In order to improvise the performance of the conventional PSO (cPSO), the fine tuning parameters- the inertia weight and acceleration coefficients are formulated in terms of global-local best values of the objective function. These global-local best inertia weight (GLBestlW) and global-local best acceleration coefficient (GLBestAC) are incorporated into PSO in order to compute the optimal power flow solution. The proposed method has been tested on the standard IEEE 30 bus test system to prove its efficacy. The results are compared with those obtained through cPSO. It is observed that the proposed algorithm is computationally faster, in terms of the number of load flows executed and provides better results than the conventional heuristic techniques.
基金supported in part by the National High-Tech Research & Development Program of China (Grant No.2011AA120304)National Key Technology R&D Program of China(Grant Nos. 2011BAB01B06 and 2006BAB05B06)
文摘Semiarid loess hilly areas in China are enduring a series of environmental conflicts between urban expansion,cultivated land conservation,soil erosion and water shortage,and require land use allocation to reconcile these environmental conflicts.We argue that the optimized spatial allocation of rural land use can be achieved by a Particle Swarm Optimization (PSO) model in conjunction with multi-objective optimization techniques.Our study focuses on Yuzhong County of Gangsu Province in China,a typical catchment on the Loess Plateau,and proposes a land use spatial optimization model.The model maximizes land use suitability and spatial compactness based on a variety of constraints,e.g.optimal land use structure and restrictive areas,and employs an improved PSO algorithm equipped with a determinant initialization method and a dynamic weighted aggregation (DWA) method to obtain the optimized land use spatial pattern.The results suggest that (1) approximately 4% of land use should be reallocated and these changes would alleviate the environmental conflicts in the study area;(2) the major reshuffling is slope farmland and newly added construction and cultivated land,whereas the unchanged areas are largely forests and basic farmland;and (3) the PSO is capable of optimizing rural land use allocation,and the determinant initialization method and DWA can improve the performance of the PSO.
基金supported by the National Defense Basic Technology Research Program of China(Grant No.Z312012B001)the National Program on Key Basic Research Project of China("973" Program)(Grant No.2013CB035405)the Combining Production and Research Program of Guangdong Province,China(Grant No.2010A090200009)
文摘The problem of maximizing system reliability through component reliability choices and component redundancy is called tell-ability-redundancy allocation problem (RAP), and it is a difficult but realistic nonlinear mixed-integer optimization prob- lem. For the RAP. we pay attention to an improved particle swarm optimization (IPSO), and introduce four hybrid approaches for combining the IPSO with other conventional search techniques, such as harmony search (HS) and LXPM (a real coded GA). The basic structure of the hybrid approaches includes two phases. After devising an initial solution by the HS or LXPM technique in the first phase, the IPSO performs an optimal search in the next phase. In addition, a new procedure by using golden search, named GS, is developed for further improving the solutions obtained by IPSO. Consequently, four ISPO-based hybrid approaches are proposed including HS-IPSO, LXPM-IPSO, HS-IPSO-GS, and LXPM-IPSO-GS. In order to validate the per-formance of proposed approaches, five nonlinear mixed-integer RAPs are investigated where both the number of re- dundancy components and the corresponding component reliability in each subsystem are to be decided simultaneously. As shown, the proposed approaches are all superior in terms of both optimal solutions and robustness to those by IPSO. Especially the pro-posed LXPM-IPSO-GS has shown more excellent performance than other typical approaches in the literature.