期刊文献+
共找到90篇文章
< 1 2 5 >
每页显示 20 50 100
基于粗糙集粒子群支持向量机的特征选择方法 被引量:9
1
作者 崔文岩 孟相如 +3 位作者 李纪真 王明鸣 陈天平 王坤 《微电子学与计算机》 CSCD 北大核心 2015年第1期120-123,共4页
将Filter型粗糙集属性约简方法与PSO-SVM方法相结合,提出一种新的粗糙集粒子群支持向量机(RSPSO-SVM)特征选择方法.给出了该方法的特征选择具体步骤,并对比分析了所提方法的性能.仿真实验表明:提出的RS-PSO-SVM特征选择方法是有效的,在... 将Filter型粗糙集属性约简方法与PSO-SVM方法相结合,提出一种新的粗糙集粒子群支持向量机(RSPSO-SVM)特征选择方法.给出了该方法的特征选择具体步骤,并对比分析了所提方法的性能.仿真实验表明:提出的RS-PSO-SVM特征选择方法是有效的,在保证所选特征集为最优情况下,极大地缩短所用时间,可以将其应用在多维数据的特征选择中. 展开更多
关键词 粗糙集 属性约简 粒子群支持向量机 特征选择
下载PDF
小生境粒子群支持向量机的网络故障诊断 被引量:1
2
作者 张亚梅 张正本 《火力与指挥控制》 CSCD 北大核心 2016年第2期158-161,165,共5页
针对支持向量机(SVM)在网络故障诊断中应用存在的参数设置和诊断模型复杂的问题,提出一种基于小生境粒子群优化的SVM解决方案。算法在进行参数寻优的同时考虑支持向量个数,实现对诊断模型复杂度的优化,并采用小生境粒子群算法进行求解,... 针对支持向量机(SVM)在网络故障诊断中应用存在的参数设置和诊断模型复杂的问题,提出一种基于小生境粒子群优化的SVM解决方案。算法在进行参数寻优的同时考虑支持向量个数,实现对诊断模型复杂度的优化,并采用小生境粒子群算法进行求解,提高算法跳出局部最优的能力。在DARPA数据集上的实验表明本文提出的方法能够有效提高诊断模型的泛化性和诊断速度。 展开更多
关键词 网络故障诊断 支持向量 小生境粒子 支持向量数目
下载PDF
二进制粒子群支持向量机算法在SAR图像海面溢油特征选择的应用 被引量:2
3
作者 朱宗斌 赵朝方 +1 位作者 曾侃 马佑军 《海洋湖沼通报》 CSCD 北大核心 2015年第3期177-184,共8页
对合成孔径雷达(synthetic Aperture Radar,SAR)图像提取得到的几何、灰度、纹理特征共66个特征量,采用封装模式算法进行特征选择,降低特征维度并提高对溢油及疑似溢油样本的识别率。特征选择采用二进制离散粒子群优化(binary particle ... 对合成孔径雷达(synthetic Aperture Radar,SAR)图像提取得到的几何、灰度、纹理特征共66个特征量,采用封装模式算法进行特征选择,降低特征维度并提高对溢油及疑似溢油样本的识别率。特征选择采用二进制离散粒子群优化(binary particle swarm optimization,BPSO)和支持向量机(support vector machine method,SVM)的封装模式算法(BPSO-SVM)进行,该方法在特征选择的同时可对支持向量机模型中的参数进行优化。论文采用BPSO-SVM算法和序列前向搜索(sequential forward selection,SFS)算法、序列后向搜索(sequential backward selection,SBS)算法与SVM算法相结合特征优化算法(SFS-SVM和SBS-SVM算法)进行实验。并将BPSO-SVM算法、SFS-SVM算法、SBS-SVM算法和直接使用SVM算法的分类识别结果进行比较。实验结果表明,BPSO-SVM算法在SAR图像上溢油特征量筛选与识别效率方面行之有效。 展开更多
关键词 SAR 溢油识别 二进制粒子群支持向量机算法 特征选择
原文传递
基于组合赋权的混合粒子群优化支持向量机的岩爆倾向性预测 被引量:13
4
作者 温廷新 陈晓宇 《安全与环境学报》 CAS CSCD 北大核心 2018年第2期440-445,共6页
为有效预测岩爆灾害发生烈度,提出一种基于组合赋权的混合粒子群优化支持向量机(H-PSO-SVM)岩爆倾向性预测模型。根据岩爆发生机制,在分析岩爆发生的主要影响因素的基础上确定出评判指标;综合考虑模糊层次分析法(FAHP)所得主观权重... 为有效预测岩爆灾害发生烈度,提出一种基于组合赋权的混合粒子群优化支持向量机(H-PSO-SVM)岩爆倾向性预测模型。根据岩爆发生机制,在分析岩爆发生的主要影响因素的基础上确定出评判指标;综合考虑模糊层次分析法(FAHP)所得主观权重和熵权法所得客观权重,应用调和平均数概念,构建组合赋权准则;引入遗传算法交叉、变异操作改进传统粒子群(PSO)极值跟踪和粒子更新方法,建立H-PSO-SVM岩爆倾向性预测模型。利用国内外已有工程实例数据进行50次随机抽样试验,对比分析H-PSO-SVM模型和PSO-SVM模型等预测结果。结果表明:H-PSO-SVM模型应用于岩爆工程实例预测具有可行性和适应性,模型预测的准确率高于其他模型,且预测结果更稳定。 展开更多
关键词 安全工程 岩爆倾向性预测 组合赋权 混合粒子优化支持向量(H-PSO-SVM)
下载PDF
基于粒子群优化支持向量机的矿井涌水量预测 被引量:2
5
作者 臧大进 刘增良 曹云峰 《凯里学院学报》 2010年第6期26-29,共4页
矿井涌水量预测是一项复杂而有难度的技术,受到很多因素的影响.提出基于粒子群优化支持向量机(PSO-SVM)的矿井涌水量预测方法,即将粒子群优化算法(PSO)用于SVM参数优化.它不仅具有很强的全局搜索能力,而且容易实现.经实验结果证明,PSO-... 矿井涌水量预测是一项复杂而有难度的技术,受到很多因素的影响.提出基于粒子群优化支持向量机(PSO-SVM)的矿井涌水量预测方法,即将粒子群优化算法(PSO)用于SVM参数优化.它不仅具有很强的全局搜索能力,而且容易实现.经实验结果证明,PSO-SVM的预测输出与实测数据基本一致,其预测精度高于普通的SVM,所有的预测误差都远小于5%的工程许可误差. 展开更多
关键词 粒子优化支持向量 粒子优化算法 支持向量 矿井涌水量 预测
下载PDF
基于粒子群-最小二乘支持向量机算法的沥青拌和站中含氧量的软测量 被引量:1
6
作者 杨建红 房怀英 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2013年第5期633-637,共5页
为了及时诊断热再生沥青搅拌站的燃烧、干燥状态,干燥滚筒的烟气含氧量检测具有重要的意义.首先通过沥青搅拌站组成和燃烧原理分析了影响烟气含氧量的相关过程参数,然后基于粒子群-最小二乘支持向量机算法(PSO-LSSVM)构建了干燥滚筒烟... 为了及时诊断热再生沥青搅拌站的燃烧、干燥状态,干燥滚筒的烟气含氧量检测具有重要的意义.首先通过沥青搅拌站组成和燃烧原理分析了影响烟气含氧量的相关过程参数,然后基于粒子群-最小二乘支持向量机算法(PSO-LSSVM)构建了干燥滚筒烟气含氧量软测量模型,通过4种不同的工况进行对比实验研究,实验结果表明:干燥滚筒烟气PSO-LSSVM含氧量软测量结果和氧传感器实测结果基本一致,最大测量误差为0.8%,能满足燃烧器的反馈控制要求.烟气含氧量的软测量为热再生沥青拌和站智能燃烧器的开发奠定基础. 展开更多
关键词 粒子-最小二乘支持向量 沥青拌和站 含氧量 燃烧状态 燃烧器
下载PDF
基于粒子群优化支持向量机的冲天炉铁液质量预测
7
作者 刘增良 李铁岭 《铜陵学院学报》 2011年第3期98-100,共3页
冲天炉铁液质量预测是一项复杂而有难度的技术,受到很多因素的影响。文章提出了基于粒子群优化支持向量机(PSO-SVM)的冲天炉铁液质量预测方法,即将粒子群优化算法(PSO)用于SVM参数优化。它不仅具有很强的全局搜索能力,而且容易实现。经... 冲天炉铁液质量预测是一项复杂而有难度的技术,受到很多因素的影响。文章提出了基于粒子群优化支持向量机(PSO-SVM)的冲天炉铁液质量预测方法,即将粒子群优化算法(PSO)用于SVM参数优化。它不仅具有很强的全局搜索能力,而且容易实现。经实验结果证明,PSO-SVM的预测输出与实测数据基本一致,其预测精度高于普通的SVM,所有的预测误差都远小于5%的工程许可误差。 展开更多
关键词 粒子优化支持向量 粒子优化算法 支持向量 冲天炉铁液质量 预测
下载PDF
核电厂环境辐射监测传感器网络中缺失值的粒子群算法-最小二乘支持向量机估计算法 被引量:3
8
作者 高雨晨 唐耀庚 《核电子学与探测技术》 CAS CSCD 北大核心 2014年第12期1508-1513,共6页
传感器节点监测数据缺失会影响核电厂外围环境辐射监测的连续性,必须对缺失数据进行准确估计。提出一种基于最小二乘支持向量机(LSSVM)的监测数据缺失值估计算法,采用粒子群算法(PSO)确定模型参数的优化组合,根据核电厂外围环境(剂量率... 传感器节点监测数据缺失会影响核电厂外围环境辐射监测的连续性,必须对缺失数据进行准确估计。提出一种基于最小二乘支持向量机(LSSVM)的监测数据缺失值估计算法,采用粒子群算法(PSO)确定模型参数的优化组合,根据核电厂外围环境(剂量率变化特点,利用节点的历史监测数据和相邻节点当前监测数据构造样本空间,对传感器节点监测数据缺失值进行估计。用实际数据进行的实验结果表明,所提出的估计算法的最大相对估计误差为3%,相关系数为0.926375,估计精度远高于基于BP神经网络模型的估计算法,也优于采用GA优化参数的LSSVM估计算法。 展开更多
关键词 环境辐射监测 无线传感网(WSN) 缺失值 估计 粒子优化最小二乘支持向量
下载PDF
基于变分模态分解排列熵和粒子群优化支持向量机的滚动轴承故障诊断方法 被引量:8
9
作者 阮婉莹 马增强 李亚超 《济南大学学报(自然科学版)》 CAS 北大核心 2018年第4期291-296,共6页
针对滚动轴承故障振动信号的非平稳性和低信噪比的特点,提出基于变分模态分解(VMD)排列熵和粒子群优化支持向量机(PSO-SVM)的滚动轴承故障诊断方法;该方法利用VMD对信号进行预处理,可得若干本征模态分量(IMFs),根据包含故障信息的数量... 针对滚动轴承故障振动信号的非平稳性和低信噪比的特点,提出基于变分模态分解(VMD)排列熵和粒子群优化支持向量机(PSO-SVM)的滚动轴承故障诊断方法;该方法利用VMD对信号进行预处理,可得若干本征模态分量(IMFs),根据包含故障信息的数量筛选出有效IMFs,求其排列熵构造特征向量,建立支持向量机的滚动轴承故障诊断模型,并用粒子群算法优化参数,以提升分类性能;在滚动轴承故障诊断实例中,通过与VMD结合SVM和集成经验模态分解(EEMD)结合PSO-SVM进行对比。结果表明,本文中提出的方法故障诊断的准确率更高。 展开更多
关键词 滚动轴承 故障诊断 变分模态分解 排列熵 粒子优化支持向量
下载PDF
基于粒子群最小二乘支持向量机的无线传感网络定位算法的研究
10
作者 李恒涛 《数字技术与应用》 2015年第11期136-138,共3页
针对传统野外无线传感网络节点定位存在环境复杂,节点分散,没有规律的分布等导致一些定位难题,本文提出了一种基于粒子群优化最小二乘支持向量回归机的三维无线传感器网络节点定位方法。实验表明,发现该方法在较少的样本条件下,亦能非... 针对传统野外无线传感网络节点定位存在环境复杂,节点分散,没有规律的分布等导致一些定位难题,本文提出了一种基于粒子群优化最小二乘支持向量回归机的三维无线传感器网络节点定位方法。实验表明,发现该方法在较少的样本条件下,亦能非常逼近目标值,具有精确的定位能力。 展开更多
关键词 粒子最小二乘支持向量 无线传感器网络定位 训练样本集
下载PDF
基于小波变换和支持向量机的开关电流电路故障诊断新方法 被引量:7
11
作者 张镇 段哲民 龙英 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2016年第5期744-752,共9页
针对开关电流(Switched current,SI)电路的故障诊断和定位问题,为进一步提高故障诊断准确率,提出了基于小波变换和粒子群优化(Particle swarm optimization,PSO)支持向量机(Support vector machine,SVM)的开关电流电路故障诊断新方法。... 针对开关电流(Switched current,SI)电路的故障诊断和定位问题,为进一步提高故障诊断准确率,提出了基于小波变换和粒子群优化(Particle swarm optimization,PSO)支持向量机(Support vector machine,SVM)的开关电流电路故障诊断新方法。该方法首先对节点电流信号进行蒙特卡罗分析,然后通过小波分解计算分形维数,再利用核主元分析(Kernel principal component analysis,KPCA)降低特征值维数,实现最优故障特征的提取。最后通过PSO-SVM完成对各种故障模式的分类。对六阶切比雪夫低通滤波器进行了仿真实验验证,获取了较高的故障诊断准确率,与其他方法进行比较,实验结果显示了本文方法的优越性。 展开更多
关键词 开关电流电路 故障诊断 小波变换 核主元分析 粒子群支持向量机
下载PDF
紫外-可见吸收光谱结合化学计量学算法的水体总有机碳浓度快速检测 被引量:2
12
作者 李煜 毕卫红 +4 位作者 孙建成 贾亚杰 付广伟 王思远 王兵 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2024年第3期722-730,共9页
总有机碳(TOC)指悬浮或溶解于水中有机物的含碳总量,是以单位体积水体中含碳的质量来表示水中有机物的浓度,通过总有机碳可以更全面反映水中有机污染物的总量。总有机碳的监测能够推动我国实现“碳达峰”和“碳中和”的目标,也对我国海... 总有机碳(TOC)指悬浮或溶解于水中有机物的含碳总量,是以单位体积水体中含碳的质量来表示水中有机物的浓度,通过总有机碳可以更全面反映水中有机污染物的总量。总有机碳的监测能够推动我国实现“碳达峰”和“碳中和”的目标,也对我国海洋地球碳循环的研究具有重要的意义。目前,国标法测量水质TOC主要采用高温催化氧化法和湿法氧化法,这两种方法虽测量准确、可解释性强,但都具有测试方法复杂、测量时间长、易产生二次污染、人力物力消耗巨大等缺点,且仅能在实验室内完成,无法进行TOC的原位在线测量。因此发展水质TOC快速、实时、在线监测技术具有重要意义。为此,建立了TOC标准溶液浓度基于紫外吸收光谱的单波长检测模型,针对物质种类更为复杂的真实水样分别使用ACO-PLS和SPA算法筛选特征波长,对比S-G平滑处理、最小最大归一化、标准正态变换(SNV)、消除常数偏移量、导数校正等多种光谱预处理方法的效果,经过粒子群算法优化的最小二乘支持向量机算法(PSO-LSSVM)建立快速检测模型。结果表明,选取不同数量特征波长,经SNV算法预处理后的建模效果普遍优于其他预处理方法;选用不同预处理算法,最佳特征波长数量普遍为50个,过多或过少的波长数量会使建模精度降低;最佳建模参数为选用SNV预处理方法,经ACO-PLS算法筛选50个特征波长组合并利用PSO-LSSVM算法建模,最优模型结果训练集Rc达到0.984 3, RMSEC为0.457 4,验证集Rp为0.974 5, RMSEP为0.481 1。将最优光谱检测模型应用于新采集水样,预测结果较为准确,具有一定鲁棒性。表明ACO-PLS算法可以有效选取特征波长,结合PSO-LSSVM算法可以实现利用紫外-可见吸收光谱对水体中TOC的测量,为水体TOC含量快速检测提供一种快速、无污染的测量方案,给相应传感器的研发提供了科学支持。 展开更多
关键词 总有 紫外-可见吸收光谱 -偏最小二乘算法 粒子-最小二乘支持向量
下载PDF
基于粒子群优化支持向量机的矿区土壤有机质含量高光谱反演 被引量:25
13
作者 谭琨 张倩倩 +1 位作者 曹茜 杜培军 《地球科学(中国地质大学学报)》 EI CAS CSCD 北大核心 2015年第8期1339-1345,共7页
为了监测复垦矿区土壤的有机质含量,综合利用光谱分析、统计学习理论与方法以及智能优化理论与方法,研究了矿区复垦土壤有机质含量与土壤光谱之间的关系,在此基础上建立了土壤有机质含量高光谱反演模型,实现土壤有机质含量定量检测.首... 为了监测复垦矿区土壤的有机质含量,综合利用光谱分析、统计学习理论与方法以及智能优化理论与方法,研究了矿区复垦土壤有机质含量与土壤光谱之间的关系,在此基础上建立了土壤有机质含量高光谱反演模型,实现土壤有机质含量定量检测.首先对原始土壤光谱数据进行预处理,然后进行相关性分析,提取450nm、500nm、650nm、770nm、1 460nm和2 140nm作为特征波段,最后利用多元线性回归(multiple linear regression,MLR)、偏最小乘回归(partial least squares regression,PLSR)和粒子群优化支持向量机回归(particle swarm optimization support vector machine regression,PSO-SVM)方法建立了土壤有机质含量的高光谱定量反演模型,并对模型进行验证.3种模型的验证结果如下:MLR、PLSR和PSO-SVM模型的R2分别为0.79、0.83和0.85,RMSE分别为5.26、4.93和4.76.实验结果表明,无论从模型的稳定性还是预测能力上,PSOSVM都要优于其他两个模型. 展开更多
关键词 土壤有 高光谱 遥感 粒子优化支持向量 粒子算法.
原文传递
基于粒子群优化支持向量机的瑞芬太尼血药浓度预测模型 被引量:7
14
作者 汤井田 曹扬 +1 位作者 肖嘉莹 郭曲练 《中国药学杂志》 CAS CSCD 北大核心 2013年第16期1394-1399,共6页
目的建立基于粒子群优化算法的瑞芬太尼血药浓度支持向量和模型。方法本实验采用粒子群算法(particle swarm optimization,PSO)优化支持向量机(support vector machine,SVM)算法,建立粒子群优化支持向量机(PSO-SVM)瑞芬太尼血药浓度预... 目的建立基于粒子群优化算法的瑞芬太尼血药浓度支持向量和模型。方法本实验采用粒子群算法(particle swarm optimization,PSO)优化支持向量机(support vector machine,SVM)算法,建立粒子群优化支持向量机(PSO-SVM)瑞芬太尼血药浓度预测模型。该模型能从较少的采样数据中准确捕捉血药浓度和时间、病人体征、给药方案之间的非线性关系。结果粒子群优化支持向量机的平均误差为-1.07%,非线性混合效应模型(nonlinear mixed effects modeling,NONMEM)为-2.24%,粒子群优化支持向量机网络的绝对平均误差9.09%,非线性混合效应模型为19.92%。结论粒子群优化支持向量机模型能迅速,稳定预测瑞芬太尼血药浓度,且准确度高,误差较小。该方法原理简单,实现便捷,运算速度快,适用于半衰期较短的麻醉速效药等多房室结构药物的群体药代药效学研究和分析。 展开更多
关键词 粒子优化支持向量模型 瑞芬太尼 血药浓度
原文传递
机载探空温度传感器设计与研究
15
作者 毛家龙 刘清惓 +1 位作者 潘旭 王柯 《电子测量技术》 北大核心 2024年第13期1-9,共9页
针对无人机开展高空气象探测的需求,本文设计了一种带防辐射罩铠装铂电阻温度传感器。首先,采用计算流体动力学(CFD)的方法计算出有无防辐射罩铠装铂电阻温度传感器在多物理场下的太阳辐射误差,并进行对比分析。然后,使用支持向量机(SVM... 针对无人机开展高空气象探测的需求,本文设计了一种带防辐射罩铠装铂电阻温度传感器。首先,采用计算流体动力学(CFD)的方法计算出有无防辐射罩铠装铂电阻温度传感器在多物理场下的太阳辐射误差,并进行对比分析。然后,使用支持向量机(SVM)和粒子群优化支持向量机(PSO-SVM)算法训练数据比较预测模型。最后,搭建低气压风洞实验平台模拟高空大气环境,对比实验数据与算法预测结果。实验表明,本文提出的带防辐射罩铠装铂电阻温度传感器测量的平均误差为0.0141 K,均方根误差为0.0150 K。 展开更多
关键词 无人 铠装铂电阻 防辐射罩 计算流体动力学 粒子优化支持向量
下载PDF
基于紫外/三维荧光的海水总有机碳浓度测量 被引量:9
16
作者 付广伟 陈翰 +2 位作者 张宏扬 毕卫红 杨仪芳 《仪器仪表学报》 EI CAS CSCD 北大核心 2020年第12期192-198,共7页
目前,测量海水总有机碳(TOC)数值的国标法主要采用高温催化燃烧氧化法和湿法氧化法,而且两种方法还停留在实验室分析阶段,存在测量过程繁琐、造成二次污染、人力物力消耗大等不足。因此,提出一种基于紫外/三维荧光的海水TOC检测方法,利... 目前,测量海水总有机碳(TOC)数值的国标法主要采用高温催化燃烧氧化法和湿法氧化法,而且两种方法还停留在实验室分析阶段,存在测量过程繁琐、造成二次污染、人力物力消耗大等不足。因此,提出一种基于紫外/三维荧光的海水TOC检测方法,利用粒子群优化-最小二乘支持向量机算法进行了荧光光谱数据处理。实验结果表明采用255、265、275 nm波长的紫外LED作为光源能够激发出效果较好的三维荧光光谱。此外,还详细分析了TOC测量数据的建模过程。所建数学模型的校正集决定系数为0.997 7,检验集决定系数为0.977 7,建立的定量数学模型效果较好,可以通过得到的三维荧光光谱数据准确的检测样品中TOC浓度数值。因此,荧光光谱检测技术是分析水体中低浓度TOC的有效方法,可以满足海洋水质环境监测的要求。 展开更多
关键词 光学传感器 三维荧光 粒子-最小二乘支持向量算法 总有
下载PDF
不同土壤类型的有机质含量的可见-近红外光谱检测模型传递方法研究 被引量:6
17
作者 胡国田 尚会威 +2 位作者 谭瑞虹 许翔虎 潘伟东 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2022年第10期3148-3154,共7页
利用可见-近红外光谱分析技术可以准确快速的获取土壤养分含量,但不同类型土壤间养分含量校正模型的普适性是亟待解决的关键问题。为提高有机质含量光谱校正模型在多类型土壤之间的普适性和农田在线检测有机质含量速度,利用美国M107B区6... 利用可见-近红外光谱分析技术可以准确快速的获取土壤养分含量,但不同类型土壤间养分含量校正模型的普适性是亟待解决的关键问题。为提高有机质含量光谱校正模型在多类型土壤之间的普适性和农田在线检测有机质含量速度,利用美国M107B区66个样品建立基于可见-近红外光谱的土壤有机质含量的粒子群-最小二乘支持向量机(PSO-LSSVM)校正模型,预测M107B区的23个验证集样品的决定系数R^(2)=0.859,相对分析误差RPD=2.660;将M107B区89个土壤样品作为校正集建模后对N116B区20个验证集样品的有机质含量预测,预测R^(2)=0.562,预测RPD=0.952,模型的预测R^(2)和预测RPD分别降低34.6%和64.2%,表明M107B区土壤有机质含量的可见-近红外光谱校正模型直接用于N116B区时,预测精度显著降低;将N116B区部分土壤样品加入到M107B区样品集后重新建模,并预测N116B区20个验证集样品的有机质含量,当加入的N116B区土壤样品数量达到35以上,预测R^(2)>0.80,预测RPD>2.0;加入到校正集的N116B区土壤样品数量从0增加到50,模型预测R^(2)从0.562增加到0.811,预测RPD从0.952增加到2.274,精度逐渐提高。结果表明,在M107B区校正模型中加入N116B区部分土壤样品建模,能够有效提高M107B区土壤校正模型对N116B区土壤有机质含量的预测精度;加入的N116B区土壤样品数量达到50以上,模型预测性能趋于稳定,预测精度达到实用要求,成功将M107B区土壤有机质含量校正模型传递给N116B区土壤;优先选择与M107B区土壤样品的有机质含量或光谱曲线差异较大的N116B区土壤样品参与建模,可有效避免模型传递时模型性能出现突变。提出的方法能够有效提高M107B区土壤的有机质校正模型对N116B区土壤的预测精度,为基于可见-近红外光谱的农田土壤有机质含量实时检测提供一种新的经济可行的模型传递方法,为提高多类型土壤的有机质含量检测模型的普适性提供一种有效的解决方案。 展开更多
关键词 可见-近红外光谱 精细农业 土壤有 粒子-最小二乘支持向量 模型传递
下载PDF
结合复小波域去噪和PSO-TSVM的群体异常行为检测 被引量:2
18
作者 胡根生 吴玉林 梁栋 《传感器与微系统》 CSCD 2020年第5期143-147,共5页
为了提高群体异常行为检测准确率,减少异常检测中噪声带来的影响,给出一种结合复小波域去噪和粒子群优化孪生支持向量机(PSO-TSVM)的群体异常行为检测算法。通过Horn-Schunck光流法提取视频中群体行为的速度、加速度、方向特征和人群密... 为了提高群体异常行为检测准确率,减少异常检测中噪声带来的影响,给出一种结合复小波域去噪和粒子群优化孪生支持向量机(PSO-TSVM)的群体异常行为检测算法。通过Horn-Schunck光流法提取视频中群体行为的速度、加速度、方向特征和人群密度特征;利用非抽样对偶树复小波包变换和双变量模型对抽取的群体行为特征进行噪声去除;使用去噪后的群体行为特征训练和测试经粒子群算法优化的孪生支持向量机模型,实现视频中的群体异常行为检测。在UMN视频数据集和自建数据集上的实验结果表明:相较于社会力模型和粒子熵模型等方法,所提算法具有更高的检测准确率。 展开更多
关键词 体异常行为检测 非抽样对偶树复小波包变换 双变量模型 粒子优化-孪生支持向量
下载PDF
基于PSO-SVM的城市桥梁群体震害预测模型研究 被引量:3
19
作者 王二涛 高惠瑛 +1 位作者 孙海 王俊杰 《震灾防御技术》 CSCD 北大核心 2017年第1期185-193,共9页
本文根据城市桥梁群体的实际震害资料数据,采用粒子群算法(PSO)来优化支持向量机(SVM)参数,选择影响桥梁震害等级的8个因素作为特征输入向量,充分用2种算法的优点建立PSO-SVM的桥梁震害预测模型。通过比较PSO-SVM和SVM模型对桥梁震害的... 本文根据城市桥梁群体的实际震害资料数据,采用粒子群算法(PSO)来优化支持向量机(SVM)参数,选择影响桥梁震害等级的8个因素作为特征输入向量,充分用2种算法的优点建立PSO-SVM的桥梁震害预测模型。通过比较PSO-SVM和SVM模型对桥梁震害的预测能力,发现PSO-SVM模型具有较高预测精度和较高的推广价值。本文的研究成果对桥梁震害等级的预测具有一定的参考价值和指导意义。 展开更多
关键词 粒子-支持向量 支持向量 桥梁 震害预测
下载PDF
基于VMD-MMPE的轧机轴承滚动体与保持架故障诊断 被引量:3
20
作者 计江 赵琛 王勇勤 《振动.测试与诊断》 EI CSCD 北大核心 2023年第2期290-297,409,共9页
针对板带轧机轴承工作环境恶劣、保持架与滚动体极易损坏、信号噪声大、识别困难以及实际工况对诊断速度要求高等问题,首先,提出粒子群优化变分模态分解(particle swarm optimization-variational mode decomposition,简称PSO-VMD)和多... 针对板带轧机轴承工作环境恶劣、保持架与滚动体极易损坏、信号噪声大、识别困难以及实际工况对诊断速度要求高等问题,首先,提出粒子群优化变分模态分解(particle swarm optimization-variational mode decomposition,简称PSO-VMD)和多元多尺度排列熵(multivariate multiscale permutation entropy,简称MMPE)的故障诊断方法,并结合粒子群优化支持向量机(particle swarm optimization-support vector machine,简称PSO-SVM)实现故障分类;其次,轴承振动信号经VMD处理为若干模态分量(intrinsic mode functions,简称IMF),选最优分量进行包络分析;然后,针对轧机轴承垂直水平轴向振动差别较大且受较大径向力与轴向力的特点,采用MMPE并考虑3维振动信号的4个分量的MMPE值与时域指标组成特征向量;最后,基于PSO-SVM模型对方法的有效性进行验证。计算和实验结果与集合经验模态分解(ensemble empirical mode decomposition,简称EEMD)与局部均值分解(local mean decomposition,简称LMD)方法对比表明,VMD-MMPE可以优化模型的输入,提高模型的诊断正确率和速度,实现轴承保持架与滚动体不同部位和不同损伤程度的故障诊断,具有重要的工程意义。 展开更多
关键词 轴承 变分模态分解 包络谱 多元多尺度排列熵 粒子优化支持向量 故障诊断
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部