期刊文献+
共找到6,267篇文章
< 1 2 250 >
每页显示 20 50 100
粒子群最小二乘支持向量机结合偏最小二乘法用于芝麻油质量的鉴别 被引量:17
1
作者 毕艳兰 任小娜 +3 位作者 彭丹 杨国龙 张林尚 汪学德 《分析化学》 SCIE EI CAS CSCD 北大核心 2013年第9期1366-1372,共7页
结合粒子群最小二乘支持向量机(PSO-LSSVM)与偏最小二乘法(PLS)提出一种基于气相色谱技术的新方法,对芝麻油进行真伪鉴别,并对掺伪品中掺假比例进行定量分析。采用主成分分析法(PCA)对857个样本的脂肪酸色谱数据进行分析,优选主成分作... 结合粒子群最小二乘支持向量机(PSO-LSSVM)与偏最小二乘法(PLS)提出一种基于气相色谱技术的新方法,对芝麻油进行真伪鉴别,并对掺伪品中掺假比例进行定量分析。采用主成分分析法(PCA)对857个样本的脂肪酸色谱数据进行分析,优选主成分作为最小二乘支持向量机(LSSVM)的输入向量。利用粒子群算法(PSO)优化LSSVM,构建芝麻油掺伪鉴别的两级分类模型,同时运用PLS建立掺伪芝麻油中掺伪油脂的定量校正模型,两级分类模型的准确率分别达到了100%和98.7%,定量分析模型的平均预测标准偏差(RMSEP)为3.91%。结果表明,本方法的鉴别准确性和模型泛化能力均优于经典的BP神经网络和支持向量机(SVM),可用于食用油脂加工和流通环节的质量控制,为食用油质量的准确鉴定提供了一条有效途径。 展开更多
关键词 芝麻油 最小乘支持向量 粒子优化算法 最小二乘 掺伪
下载PDF
基于粒子群最小二乘支持向量机的瓦斯含量预测 被引量:13
2
作者 姜谙男 梁冰 张娇 《辽宁工程技术大学学报(自然科学版)》 CAS 北大核心 2009年第3期363-366,共4页
针对经验模型与确定性模型在应用中受到限制问题,采用基于统计学习理论的支持向量机对经验数据进行学习,建立瓦斯含量与其影响因素之间的映射模型,从而实现煤层瓦斯含量预测。支持向量机的惩罚因子和核参数取值不同将会明显影响其预测... 针对经验模型与确定性模型在应用中受到限制问题,采用基于统计学习理论的支持向量机对经验数据进行学习,建立瓦斯含量与其影响因素之间的映射模型,从而实现煤层瓦斯含量预测。支持向量机的惩罚因子和核参数取值不同将会明显影响其预测的精度,支持向量机本身也没给出解决的办法,引入粒子群算法自动搜索支持向量机参数。该方法克服了神经网络过学习问题和支持向量机人为选取参数的盲目性问题。通过对某矿区样本的学习预测研究,表明该方法可取得良好的预测效果,具有较好的适应性。 展开更多
关键词 粒子算法 最小乘支持向量 瓦斯含量 预测
下载PDF
基于粒子群最小二乘支持向量机的软测量建模 被引量:10
3
作者 陈如清 俞金寿 《系统仿真学报》 EI CAS CSCD 北大核心 2007年第22期5307-5310,共4页
针对最小二乘支持向量机处理大规模样本软测量建模问题时出现模型结构复杂、失去支持向量稀疏性且正规化参数和核参数难以确定的情况,提出了一种改进的算法。利用样本间马氏距离进行样本相似程度分析,去除样本集中部分样本以简化模型结... 针对最小二乘支持向量机处理大规模样本软测量建模问题时出现模型结构复杂、失去支持向量稀疏性且正规化参数和核参数难以确定的情况,提出了一种改进的算法。利用样本间马氏距离进行样本相似程度分析,去除样本集中部分样本以简化模型结构并提高计算速度,此外应用改进的带扰动项粒子群算法优化模型参数以提高模型的拟合精度和泛化能力。将提出的改进算法用于丙烯腈收率软测量建模,研究结果表明模型精度较高、泛化性能好,满足现场测量要求。 展开更多
关键词 最小乘支持向量 马氏距离 带扰动项粒子算法 软测量
下载PDF
基于粒子群最小二乘支持向量机的水文预测 被引量:15
4
作者 李文莉 李郁侠 《计算机应用》 CSCD 北大核心 2012年第4期1188-1190,共3页
支持向量机理论为研究中长期水文预测提供了新的方法。针对最小二乘支持向量机模型参数选择费时且效果差这一问题,给出基于粒子群算法的最小二乘支持向量机水文预测模型(PSO-LSSVM)。该模型运用最小二乘支持向量机回归原理建立,参数选... 支持向量机理论为研究中长期水文预测提供了新的方法。针对最小二乘支持向量机模型参数选择费时且效果差这一问题,给出基于粒子群算法的最小二乘支持向量机水文预测模型(PSO-LSSVM)。该模型运用最小二乘支持向量机回归原理建立,参数选取采用具有全局搜索能力的粒子群算法进行寻优。用此模型对南桠河冶勒水电站月径流进行预测,仿真计算结果表明,该算法可提高预测效率与预测精度。 展开更多
关键词 最小乘支持向量 粒子算法 水文预测 参数优化 回归
下载PDF
自适应粒子群最小二乘支持向量机在铁路货运量预测中的应用 被引量:2
5
作者 耿立艳 梁毅刚 张占福 《中国市场》 2011年第41期5-7,共3页
针对铁路货运量与其影响因素间的复杂非线性关系,建立自适应粒子群最小二乘支持向量机(APSO-LSSVM)模型用于铁路货运量预测研究,利用最小二乘支持向量机的优良特性预测铁路货运量,并采用自适应粒子群算法优化选择LSSVM的参数。通过对我... 针对铁路货运量与其影响因素间的复杂非线性关系,建立自适应粒子群最小二乘支持向量机(APSO-LSSVM)模型用于铁路货运量预测研究,利用最小二乘支持向量机的优良特性预测铁路货运量,并采用自适应粒子群算法优化选择LSSVM的参数。通过对我国铁路货运量的实例分析检验APSO-LSSVM模型的预测性能。结果表明,APSO-LSSVM模型有效地预测了我国铁路货运量,具有较高的预测精度及较快的收敛速度。 展开更多
关键词 铁路货运量预测 最小乘支持向量 自适应粒子算法
下载PDF
基于粒子群最小二乘支持向量机的无线传感网络定位算法的研究
6
作者 李恒涛 《数字技术与应用》 2015年第11期136-138,共3页
针对传统野外无线传感网络节点定位存在环境复杂,节点分散,没有规律的分布等导致一些定位难题,本文提出了一种基于粒子群优化最小二乘支持向量回归机的三维无线传感器网络节点定位方法。实验表明,发现该方法在较少的样本条件下,亦能非... 针对传统野外无线传感网络节点定位存在环境复杂,节点分散,没有规律的分布等导致一些定位难题,本文提出了一种基于粒子群优化最小二乘支持向量回归机的三维无线传感器网络节点定位方法。实验表明,发现该方法在较少的样本条件下,亦能非常逼近目标值,具有精确的定位能力。 展开更多
关键词 粒子群最小二乘支持向量机 无线传感器网络定位 训练样本集
下载PDF
基于粒子群最小二乘支持向量机的径流预测 被引量:3
7
作者 李佳 马光文 +2 位作者 杨忠伟 贺玉彬 陶春华 《人民长江》 北大核心 2012年第S2期60-62,共3页
为了处理好径流模拟预测中的确定性和随机性影响因素,提出了粒子群算法PSO(Particle Swarm Opti-mization)优化最小二乘支持向量机LS-SVM(Least Square SVM)参数的径流预测模型。PSO算法能够基于群体智能进行随机优化,计算简单易于实现... 为了处理好径流模拟预测中的确定性和随机性影响因素,提出了粒子群算法PSO(Particle Swarm Opti-mization)优化最小二乘支持向量机LS-SVM(Least Square SVM)参数的径流预测模型。PSO算法能够基于群体智能进行随机优化,计算简单易于实现且具有更强的全局优化能力。利用参数优化前后的LS-SVM模型,对新疆伊犁河雅子渡站23 a实测径流进行模拟,并对径流进行预测,结果表明,该模型收敛速度和预测精度令人满意。 展开更多
关键词 径流预测 径流模型 粒子 最小乘支持向量
下载PDF
基于粒子群最小二乘支持向量机的前视声呐目标识别 被引量:5
8
作者 石洋 胡长青 《声学技术》 CSCD 北大核心 2018年第2期122-128,共7页
随着声成像技术的日益发展和广泛应用,利用图像声呐进行水下目标识别逐渐成为水声探测领域的重要研究方向之一。根据前视声呐图像的特性,提出了一种水下目标识别的方法。对声呐图像进行去噪和增强处理并分割图像,来获取目标所在区域、... 随着声成像技术的日益发展和广泛应用,利用图像声呐进行水下目标识别逐渐成为水声探测领域的重要研究方向之一。根据前视声呐图像的特性,提出了一种水下目标识别的方法。对声呐图像进行去噪和增强处理并分割图像,来获取目标所在区域、提取目标的区域形状特征;利用粒子群算法优化最小二乘支持向量机的正则化参数和核参数,构造出高性能的多分类器;输入待识别目标的特征实现分类。实验表明:优化后的最小二乘支持向量机能够准确、有效地识别出水下目标,并且具有较高的精度。 展开更多
关键词 声呐图像 特征提取 粒子 最小乘支持向量
下载PDF
基于粒子群最小二乘支持向量机的股指波动率预测
9
作者 耿立艳 祁召华 于建立 《新财经》 2019年第7期11-14,共4页
为了提高金融波动率的预测精度及建模速度,文章提出一种基于粒子群算法优化最小二乘支持向量机(LSSVM-PSO)的波动率预测方法,利用LSSVM优良的非线性逼近能力预测波动率,通过PSO算法的全局快速优化特点选择LSSVM最优参数。以中国股市实... 为了提高金融波动率的预测精度及建模速度,文章提出一种基于粒子群算法优化最小二乘支持向量机(LSSVM-PSO)的波动率预测方法,利用LSSVM优良的非线性逼近能力预测波动率,通过PSO算法的全局快速优化特点选择LSSVM最优参数。以中国股市实际交易数据为样本,通过样本内预测和样本外预测验证了该方法的有效性。结果表明,LSSVM-PSO模型具有较高的预测精度和计算效率,是一种有效的股指波动率预测方法。 展开更多
关键词 波动率预测 最小乘支持向量 粒子优化算法
下载PDF
基于沙地猫群优化–最小二乘支持向量机的动态NOx排放预测 被引量:4
10
作者 金秀章 史德金 乔鹏 《中国电机工程学报》 EI CSCD 北大核心 2024年第1期182-190,I0015,共10页
针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。... 针对火电机组频繁调峰导致机组燃烧状态不稳,进而导致锅炉出口NOx浓度波动范围大的问题,提出一种基于沙地猫群优化(sand cat sarm optimization,SCSO)的最小二乘支持向量机(leastsquaressupportvectormachine,LSSVM) NOx动态预测模型。首先利用k近邻互信息计算时间延迟的同时筛选辅助变量。然后,基于SCSO算法进行输入变量阶次的选择。使用包含辅助变量时间延迟和阶次的信息作为模型的输入,SCSO算法优化最小二乘支持向量机参数,建立动态NOx排放最小二乘支持向量机预测模型(SCSO-LSSVM动态软测量模型)。最后将模型与未加入迟延的LSSVM模型,加入迟延的LSSVM模型和粒子群优化算法(particle swarm optimization,PSO)优化最小二乘支持向量机参数的动态软测量模型进行对比验证。结果表明,相较于其他模型,该文建立SCSO-LSSVM动态软测量模型均方根误差、平均绝对误差、平均绝对误差最小,预测精度最高,而且在NOx浓度剧烈波动时也能够较好地预测NOx浓度,具有很好的动态特性。 展开更多
关键词 NOx浓度 k近邻互信息 沙地猫优化算法 最小乘支持向量 软测量模型
下载PDF
基于粒子群优化和最小二乘支持向量机的储罐腐蚀速率预测
11
作者 王明慧 党鹏飞 +1 位作者 杨铮鑫 龚博 《腐蚀与防护》 CAS CSCD 北大核心 2024年第8期71-76,共6页
利用粒子群优化(PSO)算法的全局寻优能力,对最小二乘支持向量机(LSSVM)的正则化参数和核参数进行优化,提出了基于PSO-LSSVM的大型储罐腐蚀速率的预测方法。采用该方法对储罐腐蚀速率进行预测,并利用实测数据对模型的预测精度进行验证。... 利用粒子群优化(PSO)算法的全局寻优能力,对最小二乘支持向量机(LSSVM)的正则化参数和核参数进行优化,提出了基于PSO-LSSVM的大型储罐腐蚀速率的预测方法。采用该方法对储罐腐蚀速率进行预测,并利用实测数据对模型的预测精度进行验证。结果表明:使用PSOLSSVM获得的腐蚀速率预测结果与实际腐蚀速率较为吻合,罐顶、第一层罐壁、罐底预测结果的平均绝对百分误差分别为2.265%、3.077%、1.18%,均方根误差分别为0.010%、0.012%、0.011%,决定系数分别为0.973、0.982、0.976。该方法可以对储罐内腐蚀速率进行有效的预测。 展开更多
关键词 粒子优化(PSO) 最小乘支持向量(LSSVM) 腐蚀速率预测
下载PDF
基于多分类最小二乘支持向量机和改进粒子群优化算法的电力变压器故障诊断方法 被引量:123
12
作者 郑含博 王伟 +3 位作者 李晓纲 王立楠 李予全 韩金华 《高电压技术》 EI CAS CSCD 北大核心 2014年第11期3424-3429,共6页
为了提高故障诊断的准确率,提出了一种多分类最小二乘支持向量机(LS-SVM)和改进粒子群优化(PSO)相结合的电力变压器故障诊断方法。引入最小输出编码构造多个2分类LS-SVM,实现了变压器诊断的多类分类。利用PSO算法获得LS-SVM诊断模型的... 为了提高故障诊断的准确率,提出了一种多分类最小二乘支持向量机(LS-SVM)和改进粒子群优化(PSO)相结合的电力变压器故障诊断方法。引入最小输出编码构造多个2分类LS-SVM,实现了变压器诊断的多类分类。利用PSO算法获得LS-SVM诊断模型的最优参数,并采用交叉验证原理来提高分类算法的整体泛化性能。实例分析结果表明,采用LS-SVM和PSO算法可以准确、有效地对变压器进行故障诊断;与传统的电力变压器故障诊断方法相比,该方法的诊断准确率更高。 展开更多
关键词 最小乘支持向量 多类分类 粒子优化 故障诊断 电力变压器 准确率
下载PDF
基于云粒子群-最小二乘支持向量机的传感器温度补偿 被引量:30
13
作者 张朝龙 江巨浪 +3 位作者 李彦梅 陈世军 査长礼 王陈宁 《传感技术学报》 CAS CSCD 北大核心 2012年第4期472-477,共6页
针对传感器的测量精度受温度影响较大问题,提出了一种基于云粒子群-最小二乘支持向量机(CMPSO-LSSVM)的温度补偿方法。云粒子群算法(CMPSO)将云模型算法应用于粒子群优化(PSO)算法的收敛机制,具有寻优精度高的特点。CMPSO算法对LSSVM的... 针对传感器的测量精度受温度影响较大问题,提出了一种基于云粒子群-最小二乘支持向量机(CMPSO-LSSVM)的温度补偿方法。云粒子群算法(CMPSO)将云模型算法应用于粒子群优化(PSO)算法的收敛机制,具有寻优精度高的特点。CMPSO算法对LSSVM的参数进行优化选择,建立CMPSO-LSSVM传感器温度补偿模型。将该模型应用于振弦式传感器的温度补偿,通过实验证明了该温度补偿方法优于当前其他主要方法。 展开更多
关键词 云模型 粒子优化 最小乘支持向量 温度补偿
下载PDF
基于粒子群算法的最小二乘支持向量机在红花提取液近红外定量分析中的应用 被引量:20
14
作者 金叶 杨凯 +2 位作者 吴永江 刘雪松 陈勇 《分析化学》 SCIE CAS CSCD 北大核心 2012年第6期925-931,共7页
提出一种基于粒子群算法的最小二乘支持向量机(PSO-LS-SVM)方法,用于建立红花提取过程关键质控指标的定量分析模型。近红外光谱数据经波段选择、预处理和主成分分析(降维)后,利用粒子群优化(PSO)算法对最小二乘支持向量机算法中的参数... 提出一种基于粒子群算法的最小二乘支持向量机(PSO-LS-SVM)方法,用于建立红花提取过程关键质控指标的定量分析模型。近红外光谱数据经波段选择、预处理和主成分分析(降维)后,利用粒子群优化(PSO)算法对最小二乘支持向量机算法中的参数进行优化,然后使用最优参数建立固含量和羟基红花黄色素A(HSYA)浓度的定量校正模型。将校正结果与偏最小二乘法回归(PLSR)和BP神经网络(BP-ANN)比较,并将所建的3个模型用于红花提取过程未知样本的预测。结果表明,BP-ANN校正结果优于PSO-LS-SVM和PLSR,但是对验证集和未知样品集的预测能力较差,而PSO-LS-SVM和PLSR模型的校正、验证结果相近,相关系数均大于0.987,RMSEC和RMSEP值相近且小于0.074,RPD值均大于6.26,RSEP均小于5.70%。对于未知样品集,PSO-LS-SVM模型的RPD值大于8.06,RMSEP和RSEP值分别小于0.07%和5.84%,较BP-ANN和PLSR模型更低。本研究所建立的PSO-LS-SVM模型表现出较好的模型稳定性和预测精度,具有一定的实践意义和应用价值,可推广用于红花提取过程的近红外光谱定量分析。 展开更多
关键词 近红外光谱 粒子优化 最小乘支持向量 红花提取液
下载PDF
粒子群优化–最小二乘支持向量机算法在高压断路器机械故障诊断中的应用 被引量:24
15
作者 贾嵘 洪刚 +1 位作者 薛建辉 崔建武 《电网技术》 EI CSCD 北大核心 2010年第3期197-200,共4页
提出了一种高压断路器机械故障诊断的智能算法,该算法采用最小二乘支持向量机(least squares support vector machine,LSSVM)算法,提取高压断路器振动信号的特征熵;为了提高故障诊断的精度,采用粒子群优化(particle swarm optimization,... 提出了一种高压断路器机械故障诊断的智能算法,该算法采用最小二乘支持向量机(least squares support vector machine,LSSVM)算法,提取高压断路器振动信号的特征熵;为了提高故障诊断的精度,采用粒子群优化(particle swarm optimization,PSO)算法,优化LSSVM算法的参数。算例表明:PSO-LSSVM算法不仅能够取得良好的分类效果,而且诊断速度与精度均高于传统的支持向量机(support vector machine,SVM)算法,适用于高压断路器机械故障诊断。 展开更多
关键词 高压断路器 最小乘支持向量 粒子优化 故障诊断
下载PDF
基于粒子群优化的非线性系统最小二乘支持向量机预测控制方法 被引量:46
16
作者 穆朝絮 张瑞民 孙长银 《控制理论与应用》 EI CAS CSCD 北大核心 2010年第2期164-168,共5页
对于非线性系统预测控制问题,本文提出了一种基于模型学习和粒子群优化(PSO)的单步预测控制算法.该方法使用最小二乘支持向量机(LS-SVM)建立非线性系统模型并预测系统的输出值,通过输出反馈和偏差校正减少预测误差,由PSO滚动优化获得非... 对于非线性系统预测控制问题,本文提出了一种基于模型学习和粒子群优化(PSO)的单步预测控制算法.该方法使用最小二乘支持向量机(LS-SVM)建立非线性系统模型并预测系统的输出值,通过输出反馈和偏差校正减少预测误差,由PSO滚动优化获得非线性系统的控制量.该方法能在非线性系统数学模型未知的情况下设计出有效的预测控制器.通过对单变量多变量非线性系统进行仿真,证明了该预测控制方法是有效的,且具有良好的自适应能力和鲁棒性. 展开更多
关键词 非线性系统 预测控制 最小乘支持向量 粒子
下载PDF
粒子群最小二乘支持向量机在GPS高程拟合中的应用 被引量:28
17
作者 黄磊 张书毕 +1 位作者 王亮亮 张秋昭 《测绘科学》 CSCD 北大核心 2010年第5期190-192,共3页
针对传统的GPS高程拟合方法要求有足够多样本数据的缺陷,本文采用粒子群(PSO)算法优化最小二乘支持向量机(LSSVM)参数的方法进行GPS高程拟合。实验表明,在有限样本的情况下,PSO-LSS-VM模型不仅发挥了LSSVM处理小样本数据的能力,而且通过... 针对传统的GPS高程拟合方法要求有足够多样本数据的缺陷,本文采用粒子群(PSO)算法优化最小二乘支持向量机(LSSVM)参数的方法进行GPS高程拟合。实验表明,在有限样本的情况下,PSO-LSS-VM模型不仅发挥了LSSVM处理小样本数据的能力,而且通过PSO优化后的LSSVM能够选择出合适的参数;与LM-BP神经网络、标准最小二乘支持向量机等方法比较,PSO-LSSVM模型拟合精度较高。 展开更多
关键词 粒子(PSO)算法 最小乘支持向量(LSSVM) 高程异常 GPS高程拟合
原文传递
基于粒子群优化的最小二乘支持向量机在混合气体定量分析中的应用 被引量:22
18
作者 李玉军 汤晓君 刘君华 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2010年第3期774-778,共5页
针对混合气体建模过程中最小二乘支持向量机参数难以确定及红外光谱数据计算量过大的问题,提出一种粒子群优化的最小二乘支持向量机方法,用于建立基于主成分分析特征提取的红外光谱多组分气体定量分析模型。首先对主吸收峰区域的550个... 针对混合气体建模过程中最小二乘支持向量机参数难以确定及红外光谱数据计算量过大的问题,提出一种粒子群优化的最小二乘支持向量机方法,用于建立基于主成分分析特征提取的红外光谱多组分气体定量分析模型。首先对主吸收峰区域的550个红外光谱数据利用主成分分析技术进行了特征提取,将降维得到的7个特征值作为模型的输入变量从而有效地降低了计算量。混合气体主要由浓度范围分别是0.1%~1%的甲烷、乙烷及0.1%~1.5%的丙烷三种组分气体组成。采用最小二乘支持向量机技术分别建立了各组分气体的定量分析模型,利用粒子群优化算法对最小二乘支持向量机算法中的参数进行了优化选取,取代了传统的遍历优化方法,然后利用取得的最优参数重建定量分析模型。实验结果表明,采用此方法离线建模所用时间比采用遍历优化方法节省40倍以上,预测结果误差水平相当,满足实测要求。粒子群优化算法在全局优化及收敛速度方面具有较大优势。粒子群优化算法与最小二乘支持向量机技术相结合用于混合气体定量分析是切实可行的,具有一定的实际意义和应用价值。 展开更多
关键词 红外光谱 粒子优化算法 最小乘支持向量 定量分析 混合气体 主成分分析
下载PDF
基于粒子群优化最小二乘支持向量机的非线性AVO反演 被引量:9
19
作者 谢玮 王彦春 +3 位作者 刘建军 苏建龙 毛庆辉 何润 《石油地球物理勘探》 EI CSCD 北大核心 2016年第6期1187-1194,1052,共8页
为了求解非线性AVO反演问题,本文提出基于粒子群算法和最小二乘支持向量机的非线性AVO反演方法,并用粒子群算法优化最小二乘支持向量机的参数。即首先通过精确Zoeppritz方程正演得到角道集,并进行动校正和部分角度叠加;然后运用最小二... 为了求解非线性AVO反演问题,本文提出基于粒子群算法和最小二乘支持向量机的非线性AVO反演方法,并用粒子群算法优化最小二乘支持向量机的参数。即首先通过精确Zoeppritz方程正演得到角道集,并进行动校正和部分角度叠加;然后运用最小二乘支持向量机方法建立反射振幅与弹性参数之间的非线性模型;最后以此非线性模型对地震道集数据进行反演。模型数据和实际资料的反演结果表明,该方法克服了常规广义线性AVO反演在远炮检距及弹性参数纵向变化大等情况下的缺陷,可直接从实际地震道集数据中提取较高精度的地层弹性参数,具有快速稳健、抗噪能力强的优点。 展开更多
关键词 非线性AVO反演 粒子算法 最小乘支持向量 广义线性AVO反演
下载PDF
基于最小二乘支持向量机和粒子群算法的两相流含油率软测量方法 被引量:35
20
作者 张春晓 张涛 《中国电机工程学报》 EI CSCD 北大核心 2010年第2期86-91,共6页
为提高油水两相流含油率的测量精度,提出基于最小二乘支持向量机(least squares support vector machine,LSSVM)和改进的粒子群算法(particle swarm optimization,PSO)的含油率建模方法。该方法将测量的油水总流量和加热器上下... 为提高油水两相流含油率的测量精度,提出基于最小二乘支持向量机(least squares support vector machine,LSSVM)和改进的粒子群算法(particle swarm optimization,PSO)的含油率建模方法。该方法将测量的油水总流量和加热器上下游温差作为LSSVM输入,含油率作为输出,对含油率与温差和总流量的关系进行训练,通过改进的PSO优化LSSVM的参数,建立了含油率的优化模型,并用测试数据对含油率的模型进行了比较。实验结果表明,基于改进的PSO-LSSVM含油率模型比PSO-LSSVM和遗传算法-最小二乘支持向量机模型运算速度快,比理论修正模型测量精度高,含油率在4%~60%时,平均测量误差为0.93%。 展开更多
关键词 热式油水两相流 含油率 铂电阻 最小乘支持向量 粒子算法 遗传算法
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部