火力分配作为集群目标来袭防御任务规划的关键环节,对提高防御效果具有重要意义。针对高炮反无人机的火力分配问题,将高炮性能指标约束和转火时间约束转化为可拦截因子,提出一种基于可拦截因子的高炮反无人机火力分配模型,减小非线性约...火力分配作为集群目标来袭防御任务规划的关键环节,对提高防御效果具有重要意义。针对高炮反无人机的火力分配问题,将高炮性能指标约束和转火时间约束转化为可拦截因子,提出一种基于可拦截因子的高炮反无人机火力分配模型,减小非线性约束转化为惩罚函数带来的计算量及误差,进而提升整体效能。基于此模型,针对来袭目标与火力节点之间的火力优化匹配问题,采用改进混合遗传粒子群算法(Hybrid GA and PSO,HGAPSO)优化算法对模型进行最优值求解。仿真试验结果表明该模型合理有效,HGAPSO算法有较高的收敛精度和较快的收敛速率。展开更多
We extended an improved version of the discrete particle swarm optimization (DPSO) algorithm proposed by Liao et al.(2007) to solve the dynamic facility layout problem (DFLP). A computational study was performed with ...We extended an improved version of the discrete particle swarm optimization (DPSO) algorithm proposed by Liao et al.(2007) to solve the dynamic facility layout problem (DFLP). A computational study was performed with the existing heuristic algorithms, including the dynamic programming (DP), genetic algorithm (GA), simulated annealing (SA), hybrid ant system (HAS), hybrid simulated annealing (SA-EG), hybrid genetic algorithms (NLGA and CONGA). The proposed DPSO algorithm, SA, HAS, GA, DP, SA-EG, NLGA, and CONGA obtained the best solutions for 33, 24, 20, 10, 12, 20, 5, and 2 of the 48 problems from (Balakrishnan and Cheng, 2000), respectively. These results show that the DPSO is very effective in dealing with the DFLP. The extended DPSO also has very good computational efficiency when the problem size increases.展开更多
文摘火力分配作为集群目标来袭防御任务规划的关键环节,对提高防御效果具有重要意义。针对高炮反无人机的火力分配问题,将高炮性能指标约束和转火时间约束转化为可拦截因子,提出一种基于可拦截因子的高炮反无人机火力分配模型,减小非线性约束转化为惩罚函数带来的计算量及误差,进而提升整体效能。基于此模型,针对来袭目标与火力节点之间的火力优化匹配问题,采用改进混合遗传粒子群算法(Hybrid GA and PSO,HGAPSO)优化算法对模型进行最优值求解。仿真试验结果表明该模型合理有效,HGAPSO算法有较高的收敛精度和较快的收敛速率。
文摘We extended an improved version of the discrete particle swarm optimization (DPSO) algorithm proposed by Liao et al.(2007) to solve the dynamic facility layout problem (DFLP). A computational study was performed with the existing heuristic algorithms, including the dynamic programming (DP), genetic algorithm (GA), simulated annealing (SA), hybrid ant system (HAS), hybrid simulated annealing (SA-EG), hybrid genetic algorithms (NLGA and CONGA). The proposed DPSO algorithm, SA, HAS, GA, DP, SA-EG, NLGA, and CONGA obtained the best solutions for 33, 24, 20, 10, 12, 20, 5, and 2 of the 48 problems from (Balakrishnan and Cheng, 2000), respectively. These results show that the DPSO is very effective in dealing with the DFLP. The extended DPSO also has very good computational efficiency when the problem size increases.