期刊文献+
共找到31篇文章
< 1 2 >
每页显示 20 50 100
粒子群-神经网络在华南夏季降水短期气候预测中应用研究 被引量:7
1
作者 覃卫坚 李耀先 +1 位作者 陈思蓉 谢敏 《气象研究与应用》 2015年第2期1-7,共7页
使用1961~2013年广东、广西、海南三省共110个气象观测站的日降水资料、CMAP格点降水、国家气候中心74项和美国NOAA CPC 40项指数资料、NCEP/NCAR再分析资料,利用经验正交公式(EOF)等方法分析华南夏季降水气候变化特征,查找其影响关... 使用1961~2013年广东、广西、海南三省共110个气象观测站的日降水资料、CMAP格点降水、国家气候中心74项和美国NOAA CPC 40项指数资料、NCEP/NCAR再分析资料,利用经验正交公式(EOF)等方法分析华南夏季降水气候变化特征,查找其影响关键因子,使用粒子群-神经网络建模预报。结果表明:利用高相关因子的粒子群-神经网络建模预报,从近10a华南夏季降水回报结果对比来看,粒子群-神经网络效果略好于国家气候中心第二代海-陆-冰-气耦合的气候系统动力模式,动力模式好于逐步回归方法。从7年华南出现异常降水年份的预报试验来看,利用异常因子的粒子群-神经网络建模预报误差均小于动力模式预报,预报与实况同号率高达到85.7%,高于动力模式,可见粒子群-神经网络建模预测具有很好的应用前景。 展开更多
关键词 粒子群-神经网络 夏季降水 EOF分析 华南
下载PDF
基于改进粒子群-径向基神经网络模型的短期电力负荷预测 被引量:26
2
作者 师彪 李郁侠 +3 位作者 于新花 闫旺 何常胜 孟欣 《电网技术》 EI CSCD 北大核心 2009年第17期180-184,共5页
为了准确、快速、高效地预测电网短期负荷,提出了改进的粒子群–径向基神经网络算法。用改进的粒子群算法训练径向基神经网络,实现了径向基函数神经网络的参数优化。建立了短期电力负荷预测模型,综合考虑气象、天气、日期类型等影响负... 为了准确、快速、高效地预测电网短期负荷,提出了改进的粒子群–径向基神经网络算法。用改进的粒子群算法训练径向基神经网络,实现了径向基函数神经网络的参数优化。建立了短期电力负荷预测模型,综合考虑气象、天气、日期类型等影响负荷的因素进行短期负荷预测。算例结果表明,该算法优于径向基神经网络法和粒子群–径向基网络算法,克服了径向基网络和粒子群优化方法的缺点,改善了径向基神经网络的泛化能力,输出稳定,预测精度高,收敛速度快,平均百分比误差可控制在1.2%以内。 展开更多
关键词 负荷预测 改进粒子-径向基神经网络模型 泛化能力 预测精度
下载PDF
响应面和粒子群-人工神经网络模型优化微波辅助提取赤芍总苷工艺 被引量:2
3
作者 杜妹玲 陈志红 +3 位作者 朱轩池 兰红宇 李永 张秀玲 《食品工业科技》 CAS 北大核心 2023年第15期248-257,共10页
以赤芍(Paeoniae Radix Rubra)为原料,建立单因素-Box-Behnken试验,探究微波功率、提取时间、提取次数、乙醇浓度和液固比对赤芍总苷提取量的影响,并评价提取物的体外抗氧化活性。通过建立响应面模型和粒子群-人工神经网络模型对微波辅... 以赤芍(Paeoniae Radix Rubra)为原料,建立单因素-Box-Behnken试验,探究微波功率、提取时间、提取次数、乙醇浓度和液固比对赤芍总苷提取量的影响,并评价提取物的体外抗氧化活性。通过建立响应面模型和粒子群-人工神经网络模型对微波辅助提取赤芍总苷的工艺进行优化。结果表明:响应面模型和粒子群-人工神经网络模型的决定系数R2分别为0.9099和0.9925,表明粒子群-人工神经网络具有更好的预测能力。采用粒子群-人工神经网络模型优化提取工艺条件:乙醇浓度81%、液固比30 mL/g、提取时间22 s、提取5次、微波功率420 W,在此条件下,赤芍总苷的提取量为378.977±1.982 mg PE/g d.w.;赤芍苷提取物(100μg/mL)对DPPH自由基和ABTS+自由基的清除率分别为87.61%和80.74%,接近阳性对照。提取物还具有一定的还原能力。本研究结果为优化提取工艺提供了新的方法,也为赤芍有效成分作为添加剂的应用提供了理论基础。 展开更多
关键词 赤芍总苷 微波辅助提取 响应面 粒子-人工神经网络 体外抗氧化活性
下载PDF
基于改进粒子群优化-反向传播神经网络算法的小麦储藏品质预测模型 被引量:8
4
作者 蒋华伟 郭陶 杨震 《科学技术与工程》 北大核心 2021年第21期8951-8956,共6页
在使用反向传播神经网络(back propagation neural network,BPNN)预测小麦的储藏品质时,由于其易陷入局部极值且收敛速度慢,导致预测误差较大且稳定性较差,由此提出一种改进粒子群(improved particle swarm optimization,IPSO)算法优化... 在使用反向传播神经网络(back propagation neural network,BPNN)预测小麦的储藏品质时,由于其易陷入局部极值且收敛速度慢,导致预测误差较大且稳定性较差,由此提出一种改进粒子群(improved particle swarm optimization,IPSO)算法优化的BPNN预测模型。采用非线性函数动态调整粒子群算法中的惯性权重和学习因子,优化BPNN中的权值参数,进而构建IPSO-BPNN预测模型。为验证该模型的准确性和稳定性,将其与BPNN模型、PSO-BPNN模型进行对比,结果表明:IPSO-BPNN模型预测的均方误差显著降低,有助于提高小麦储藏品质预测的准确性和可靠性。 展开更多
关键词 小麦储藏品质 多指标分析 粒子算法 改进粒子优化-反向传播神经网络(IPSO-BPNN) 预测模型
下载PDF
基于自适应PSO-BP神经网络的电力工程造价预测研究
5
作者 于炳慧 《办公自动化》 2024年第21期1-3,共3页
文章提出对基于自适应PSO-BP神经网络的电力工程造价预测方法的设计与研究。根据当前的预测需求,先进行数据预处理,用多阶段的形式,扩大预测的覆盖范围,完成设定多阶段造价预测的目标。基于此,设计自适应PSO-BP神经网络电力造价预测模型... 文章提出对基于自适应PSO-BP神经网络的电力工程造价预测方法的设计与研究。根据当前的预测需求,先进行数据预处理,用多阶段的形式,扩大预测的覆盖范围,完成设定多阶段造价预测的目标。基于此,设计自适应PSO-BP神经网络电力造价预测模型,用动态寻优的方式实现最终预测处理。测试结果表明:对比于大数据电力工程造价的预测方法、GIM标准电力工程造价预测方法,文章设计的自适应PSO-BP神经网络电力工程造价预测方法最终得出的平均误差相对较小,整体上较可控,这说明在自适应PSO-BP神经网络的辅助下,文章设计的电力工程造价预测方法更加高效、稳定,针对性明显提升,造价预测的效果更为真实。 展开更多
关键词 自适应结构 粒子优化-反向传播(PSO-BP)神经网络 电力工程 造价预测 成本控制 电力系统
下载PDF
延伸期暴雨过程的神经网络预报技术应用初探 被引量:6
6
作者 覃卫坚 廖雪萍 陈思蓉 《气象研究与应用》 2018年第4期1-4,共4页
利用DERF2.0延伸期环流预报数据资料,首先使用暴雨过程信号指标就一般降水和暴雨过程进行分类,结果延伸期逐日降水分类预报准确率为65%。最后利用逐步回归和粒子群-神经网络方法就延伸期暴雨综合强度进行建模预报,逐步回归方法在F=3条... 利用DERF2.0延伸期环流预报数据资料,首先使用暴雨过程信号指标就一般降水和暴雨过程进行分类,结果延伸期逐日降水分类预报准确率为65%。最后利用逐步回归和粒子群-神经网络方法就延伸期暴雨综合强度进行建模预报,逐步回归方法在F=3条件下对广西暴雨综合强度预报误差最小;粒子群-神经网络预报误差均小于逐步回归方法,相对误差较逐步回归方法预报效果最好的方程减小了32.5%,可见粒子群-神经网络在延伸期定量化预报中具有很好的应用前景。 展开更多
关键词 延伸期暴雨过程 粒子群-神经网络 暴雨综合强度
下载PDF
基于K-近邻算法改进粒子群-反向传播算法的织物质量预测技术
7
作者 孙长敏 戴宁 +5 位作者 沈春娅 徐开心 陈炜 胡旭东 袁嫣红 陈祖红 《纺织学报》 EI CAS CSCD 北大核心 2024年第7期72-77,共6页
为解决现有下机织物质量差异性较大且传统验布环节时间较长等问题,提出基于K-近邻(KNN)算法改进粒子群-反向传播(PSO-BP)算法的织物质量等级预测方法。首先分析织物质量预测模型,整理织物疵点类型与织物质量等级分类,并根据织物疵点特... 为解决现有下机织物质量差异性较大且传统验布环节时间较长等问题,提出基于K-近邻(KNN)算法改进粒子群-反向传播(PSO-BP)算法的织物质量等级预测方法。首先分析织物质量预测模型,整理织物疵点类型与织物质量等级分类,并根据织物疵点特征将疵点划分为6类;其次选取14种影响织物质量的因子作为模型输入量;然后详细介绍依据KNN与PSO原理进行织物质量预测流程;最后以浙江兰溪某纺织厂近3个月16186条织物生产数据为例,建立织物质量预测模型。结果显示:该技术对织物质量预测的准确率达到98.054%,且训练时长仅需4.8 s,在保证织物质量预测准确性的同时,极大缩短了检测时间,提高了织造车间生产效率。 展开更多
关键词 织布车间 织物质量 K-近邻算法 粒子-反向传播神经网络算法 织物质量预测
下载PDF
Innovative approaches in high-speed railway bridge model simplification for enhanced computational efficiency
8
作者 ZHOU Wang-bao XIONG Li-jun +1 位作者 JIANG Li-zhong ZHONG Bu-fan 《Journal of Central South University》 CSCD 2024年第11期4203-4217,共15页
In the realm of high-speed railway bridge engineering,managing the intricacies of the track-bridge system model(TBSM)during seismic events remains a formidable challenge.This study pioneers an innovative approach by p... In the realm of high-speed railway bridge engineering,managing the intricacies of the track-bridge system model(TBSM)during seismic events remains a formidable challenge.This study pioneers an innovative approach by presenting a simplified bridge model(SBM)optimized for both computational efficiency and precise representation,a seminal contribution to the engineering design landscape.Central to this innovation is a novel model-updating methodology that synergistically melds artificial neural networks with an augmented particle swarm optimization.The neural networks adeptly map update parameters to seismic responses,while enhancements to the particle swarm algorithm’s inertial and learning weights lead to superior SBM parameter updates.Verification via a 4-span high-speed railway bridge revealed that the optimized SBM and TBSM exhibit a highly consistent structural natural period and seismic response,with errors controlled within 7%.Additionally,the computational efficiency improved by over 100%.Leveraging the peak displacement and shear force residuals from the seismic TBSM and SBM as optimization objectives,SBM parameters are adeptly revised.Furthermore,the incorporation of elastoplastic springs at the beam ends of the simplified model effectively captures the additional mass,stiffness,and constraint effects exerted by the track system on the bridge structure. 展开更多
关键词 high-speed railway bridge engineering track-bridge system model simplified bridge model artificial neural networks particle swarm optimization seismic analysis
下载PDF
Springback prediction for incremental sheet forming based on FEM-PSONN technology 被引量:6
9
作者 韩飞 莫健华 +3 位作者 祁宏伟 龙睿芬 崔晓辉 李中伟 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第4期1061-1071,共11页
In the incremental sheet forming (ISF) process, springback is a very important factor that affects the quality of parts. Predicting and controlling springback accurately is essential for the design of the toolpath f... In the incremental sheet forming (ISF) process, springback is a very important factor that affects the quality of parts. Predicting and controlling springback accurately is essential for the design of the toolpath for ISF. A three-dimensional elasto-plastic finite element model (FEM) was developed to simulate the process and the simulated results were compared with those from the experiment. The springback angle was found to be in accordance with the experimental result, proving the FEM to be effective. A coupled artificial neural networks (ANN) and finite element method technique was developed to simulate and predict springback responses to changes in the processing parameters. A particle swarm optimization (PSO) algorithm was used to optimize the weights and thresholds of the neural network model. The neural network was trained using available FEM simulation data. The results showed that a more accurate prediction of s!oringback can be acquired using the FEM-PSONN model. 展开更多
关键词 incremental sheet forming (ISF) springback prediction finite element method (FEM) artificial neural network (ANN) particle swarm optimization (PSO) algorithm
下载PDF
改进PSO-RBFNN算法在退化型产品寿命预测中的应用 被引量:1
10
作者 付霖宇 王浩伟 《海军航空工程学院学报》 2013年第4期412-416,共5页
针对部分高可靠性产品退化规律无法掌握的难题,提出了使用改进粒子群优化—基于神经网络函数(PSO-RBFNN)算法拟合样品退化轨迹、预测伪寿命值的方法。首先,通过改进PSO算法对RBFNN进行训练优化;然后,使用部分测量数据对训练后的RBFNN进... 针对部分高可靠性产品退化规律无法掌握的难题,提出了使用改进粒子群优化—基于神经网络函数(PSO-RBFNN)算法拟合样品退化轨迹、预测伪寿命值的方法。首先,通过改进PSO算法对RBFNN进行训练优化;然后,使用部分测量数据对训练后的RBFNN进行准确度测试;最后,通过RBFNN预测样品退化轨迹,估计出伪寿命值。使用某型电连接器的加速退化试验数据对提出的方法进行了试验验证,成功对该型电连接器进行了寿命预测,得出平均寿命为200 412 h。 展开更多
关键词 寿命预测 退化轨迹 粒子优化-基于神经网络函数 伪寿命
下载PDF
Construction of Early-warning Model for Plant Diseases and Pests Based on Improved Neural Network 被引量:2
11
作者 曹志勇 邱靖 +1 位作者 曹志娟 杨毅 《Agricultural Science & Technology》 CAS 2009年第6期135-137,154,共4页
By studying principles and methods related to early-warning model of plant diseases and using PSO method, parameter optimization was conducted to backward propagation neural network, and a pre-warning model for plant ... By studying principles and methods related to early-warning model of plant diseases and using PSO method, parameter optimization was conducted to backward propagation neural network, and a pre-warning model for plant diseases based on particle swarm and neural network algorithm was established. The test results showed that the construction of early-warning model is effective and feasible, which will provide a via- ble model structure to establish the effective early-warning platform. 展开更多
关键词 Backward propagation neural network Particle swarm algorithm Plant diseases and pests Early-warning model
下载PDF
广西暴雨集中度智能气候预测方法研究
12
作者 覃卫坚 何莉阳 蔡悦幸 《气象研究与应用》 2024年第3期12-20,共9页
利用1961—2023年广西79个气象观测站逐日降水和国家气候中心大气环流、海温指数资料,构建广西暴雨集中度计算方法,基于逐步回归方法、粒子群-神经网络、随机森林算法,建立暴雨集中度气候预测模型。结果表明,广西存在以桂林和柳州两市... 利用1961—2023年广西79个气象观测站逐日降水和国家气候中心大气环流、海温指数资料,构建广西暴雨集中度计算方法,基于逐步回归方法、粒子群-神经网络、随机森林算法,建立暴雨集中度气候预测模型。结果表明,广西存在以桂林和柳州两市北部为中心的桂东北地区、以“东兰、巴马、凤山”为中心的桂西山区和沿海地区三个暴雨集中度高值区,暴雨集中度异常大小基本反映发生洪涝和干旱灾害的严重程度。经过2020—2023年气候预测试验,粒子群-神经网络算法预测效果最好,其次为随机森林算法,第三是逐步回归方法。 展开更多
关键词 暴雨 集中度 集中期 粒子群-神经网络 随机森林算法
下载PDF
An ICPSO-RBFNN nonlinear inversion for electrical resistivity imaging 被引量:3
13
作者 江沸菠 戴前伟 董莉 《Journal of Central South University》 SCIE EI CAS CSCD 2016年第8期2129-2138,共10页
To improve the global search ability and imaging quality of electrical resistivity imaging(ERI) inversion, a two-stage learning ICPSO algorithm of radial basis function neural network(RBFNN) based on information crite... To improve the global search ability and imaging quality of electrical resistivity imaging(ERI) inversion, a two-stage learning ICPSO algorithm of radial basis function neural network(RBFNN) based on information criterion(IC) and particle swarm optimization(PSO) is presented. In the proposed method, IC is applied to obtain the hidden layer structure by calculating the optimal IC value automatically and PSO algorithm is used to optimize the centers and widths of the radial basis functions in the hidden layer. Meanwhile, impacts of different information criteria to the inversion results are compared, and an implementation of the proposed ICPSO algorithm is given. The optimized neural network has one hidden layer with 261 nodes selected by AKAIKE's information criterion(AIC) and it is trained on 32 data sets and tested on another 8 synthetic data sets. Two complex synthetic examples are used to verify the feasibility and effectiveness of the proposed method with two learning stages. The results show that the proposed method has better performance and higher imaging quality than three-layer and four-layer back propagation neural networks(BPNNs) and traditional least square(LS) inversion. 展开更多
关键词 electrical resistivity imaging nonlinear inversion information criterion(IC) radial basis function neural network(RBFNN) particle swarm optimization(PSO)
下载PDF
Temperature prediction model for a high-speed motorized spindle based on back-propagation neural network optimized by adaptive particle swarm optimization 被引量:1
14
作者 Lei Chunli Zhao Mingqi +2 位作者 Liu Kai Song Ruizhe Zhang Huqiang 《Journal of Southeast University(English Edition)》 EI CAS 2022年第3期235-241,共7页
To predict the temperature of a motorized spindle more accurately,a novel temperature prediction model based on the back-propagation neural network optimized by adaptive particle swarm optimization(APSO-BPNN)is propos... To predict the temperature of a motorized spindle more accurately,a novel temperature prediction model based on the back-propagation neural network optimized by adaptive particle swarm optimization(APSO-BPNN)is proposed.First,on the basis of the PSO-BPNN algorithm,the adaptive inertia weight is introduced to make the weight change with the fitness of the particle,the adaptive learning factor is used to obtain different search abilities in the early and later stages of the algorithm,the mutation operator is incorporated to increase the diversity of the population and avoid premature convergence,and the APSO-BPNN model is constructed.Then,the temperature of different measurement points of the motorized spindle is forecasted by the BPNN,PSO-BPNN,and APSO-BPNN models.The experimental results demonstrate that the APSO-BPNN model has a significant advantage over the other two methods regarding prediction precision and robustness.The presented algorithm can provide a theoretical basis for intelligently controlling temperature and developing an early warning system for high-speed motorized spindles and machine tools. 展开更多
关键词 temperature prediction high-speed motorized spindle particle swarm optimization algorithm back-propagation neural network ROBUSTNESS
下载PDF
Intelligent anti-swing control for bridge crane 被引量:2
15
作者 陈志梅 孟文俊 张井岗 《Journal of Central South University》 SCIE EI CAS 2012年第10期2774-2781,共8页
A new intelligent anti-swing control scheme,which combined fuzzy neural network(FNN) and sliding mode control(SMC) with particle swarm optimization(PSO),was presented for bridge crane.The outputs of three fuzzy neural... A new intelligent anti-swing control scheme,which combined fuzzy neural network(FNN) and sliding mode control(SMC) with particle swarm optimization(PSO),was presented for bridge crane.The outputs of three fuzzy neural networks were used to approach the uncertainties of the positioning subsystem,lifting-rope subsystem and anti-swing subsystem.Then,the parameters of the controller were optimized with PSO to enable the system to have good dynamic performances.During the process of high-speed load hoisting and dropping,this method can not only realize the accurate position of the trolley and eliminate the sway of the load in spite of existing uncertainties,and the maximum swing angle is only ±0.1 rad,but also completely eliminate the chattering of conventional sliding mode control and improve the robustness of system.The simulation results show the correctness and validity of this method. 展开更多
关键词 bridge crane anti-swing control fuzzy neural network sliding mode control particle swarm optimization
下载PDF
Inversion of 3D density interface with PSO-BP method 被引量:4
16
作者 ZHANG Dailei ZHANG Chong 《Global Geology》 2016年第1期33-40,共8页
BP( Back Propagation) neural network and PSO( Particle Swarm Optimization) are two main heuristic optimization methods,and are usually used as nonlinear inversion methods in geophysics. The authors applied BP neural n... BP( Back Propagation) neural network and PSO( Particle Swarm Optimization) are two main heuristic optimization methods,and are usually used as nonlinear inversion methods in geophysics. The authors applied BP neural network and BP neural network optimized with PSO into the inversion of 3D density interface respectively,and a comparison was drawn to demonstrate the inversion results. To start with,a synthetic density interface model was created and we used the proceeding inversion methods to test their effectiveness. And then two methods were applied into the inversion of the depth of Moho interface. According to the results,it is clear to find that the application effect of PSO-BP is better than that of BP network. The BP network structures used in both synthetic and field data are consistent in order to obtain preferable inversion results. The applications in synthetic and field tests demonstrate that PSO-BP is a fast and effective method in the inversion of 3D density interface and the optimization effect is evident compared with BP neural network merely,and thus,this method has practical value. 展开更多
关键词 INVERSION 3D density interface Moho interface BP neural network particle swarm optimization
下载PDF
Boiler combustion optimization based on ANN and PSO-Powell algorithm 被引量:1
17
作者 戴维葆 邹平华 +1 位作者 冯明华 董占双 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2009年第2期198-203,共6页
To improve the thermal efficiency and reduce nitrogen oxides (NOx ) emissions in a power plant for energy conservation and environment protection, based on the reconstructed section temperature field and other relat... To improve the thermal efficiency and reduce nitrogen oxides (NOx ) emissions in a power plant for energy conservation and environment protection, based on the reconstructed section temperature field and other related parameters, dynamic radial basis function (RBF) artificial neural network (ANN) models for forecasting unburned carbon in fly ash and NO, emissions in flue gas ware developed in this paper, together with a multi-objective optimization system utilizing particle swarm optimization and Powell (PSO-Powell) algorithm. To validate the proposed approach, a series of field tests were conducted in a 350 MW power plant. The results indicate that PSO-Powell algorithm can improve the capability to search optimization solution of PSO algorithm, and the effectiveness of system. Its prospective application in the optimization of a pulverized coal ( PC ) fired boiler is presented as well. 展开更多
关键词 boiler combustion ANN PSO-Powell algorithm multi-objective optimization section temperature field
下载PDF
Catalytic Cracking and PSO-RBF Neural Network Model of FCC Cycle Oil 被引量:3
18
作者 Liu Yibin Tu Yongshan +1 位作者 Li Chunyi Yang Chaohe 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2013年第4期63-69,共7页
Catalytic cracking experiments of FCC cycle oil were carried out in a fixed fluidized bed reactor. Effects of reac- tion conditions, such as temperature, catalyst to oil ratio and weight hourly space velocity, were in... Catalytic cracking experiments of FCC cycle oil were carried out in a fixed fluidized bed reactor. Effects of reac- tion conditions, such as temperature, catalyst to oil ratio and weight hourly space velocity, were investigated. Hydrocarbon composition of gasoline was analyzed by gas chromatograph. Experimental results showed that conversion of cycle oil was low on account of its poor crackability performance, and the effect of reaction conditions on gasoline yield was obvi- ous. The paraffin content was very high in gasoline. Based on the experimental yields under different reaction conditions, a model for prediction of gasoline and diesel yields was established by radial basis function neural network (RBFNN). In the model, the product yield was viewed as function of reaction conditions. Particle swarm optimization (PSO) algorithm with global search capability was used to obtain optimal conditions for a highest yield of light oil. The results showed that the yield of gasoline and diesel predicted by RBF neural network agreed well with the experimental values. The optimized reac- tion conditions were obtained at a reaction temperature of around 520 ~C, a catalyst to oil ratio of 7.4 and a space velocity of 8 h~. The predicted total yield of gasoline and diesel reached 42.2% under optimized conditions. 展开更多
关键词 catalytic cracking cycle oil radical basis function neural network particle swarm optimization
下载PDF
Planning of Anti-Disaster Transformer Substation Based on NN and PSO
19
作者 Tao Wang Xiaolei Yang +2 位作者 Qijun Tang Jia Li Xuandong Liu 《Journal of Energy and Power Engineering》 2013年第10期1992-1997,共6页
Recently, the frequent extreme natural disasters made enormous damage to the electric grid leading to blackouts. The lifeline system aiming at providing continuous power supply for the important load in extreme natura... Recently, the frequent extreme natural disasters made enormous damage to the electric grid leading to blackouts. The lifeline system aiming at providing continuous power supply for the important load in extreme natural disasters was designed in that condition. In this paper, a developed model for planning of the transformer substation in lifeline system which considered the effect of existing transformer substations, the motivated areas and punishment areas was proposed. The Hopfield NN (neural network) was adopted to solve the feeders and the PSO (particle swarm optimization) was adopted to new the locations of the transformer substations based on the feeders. The planning result not only took fully use of the existing substation but also got the suitable location for new construction which was satisfactory. 展开更多
关键词 Lifeline system transformer substation Hopfield NN PSO.
下载PDF
基于局部线性嵌入的人工智能台风强度集合预报模型 被引量:11
20
作者 黄颖 金龙 +2 位作者 黄小燕 史旭明 金健 《气象》 CSCD 北大核心 2014年第7期806-815,共10页
利用局部线性嵌入算法通过学习挖掘高维数据集的内在几何结构,高效地实现维数约简和特征提取的能力,论文以2001—2012年共12年6—9月西北太平洋海域内生成的台风样本为基础,将气候持续因子作为台风强度的基本预报因子,采用局部线性嵌入... 利用局部线性嵌入算法通过学习挖掘高维数据集的内在几何结构,高效地实现维数约简和特征提取的能力,论文以2001—2012年共12年6—9月西北太平洋海域内生成的台风样本为基础,将气候持续因子作为台风强度的基本预报因子,采用局部线性嵌入的特征提取与逐步回归计算相结合的预报因子信息数据挖掘技术,以进化计算的粒子群算法,生成期望输出相同的多个神经网络个体,建立了一种新的非线性人工智能集合预报模型,进行了分月台风强度预报模型的建模研究。在建模样本、独立预报样本相同的情况下,分别采用人工智能集合预报方法和气候持续法进行预报试验。试验对比结果表明,前者较后者在6、7、8和9月24 h台风强度预报中,平均绝对误差分别下降了23.34%、24.46%、19.41%和27.45%,4个月的平均绝对误差下降了23.10%;48 h台风强度预报中,6—9月平均绝对误差分别下降了44.82%、16.73%、0.89%和49.26%,4个月的平均绝对误差下降了25.54%。进一步研究发现,在变动局部线性嵌入算法忌近邻个数的情况下,建立的台风强度集合预报模型,其预报结果稳定可靠,相对于气候持续法均为正的预报技巧水平,为台风强度客观预报提供了新的预报工具和预报建模方法。 展开更多
关键词 局部线性嵌入 粒子群-神经网络 集合预报 气候持续法 台风强度
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部