In the fight against cancer, controlled drug delivery systems have emerged to enhance the therapeutic efficacy and safety of anti-cancer drugs. Among these systems, mesoporous silica nanoparticles (MSNs) with a func...In the fight against cancer, controlled drug delivery systems have emerged to enhance the therapeutic efficacy and safety of anti-cancer drugs. Among these systems, mesoporous silica nanoparticles (MSNs) with a functional surface possess obvious advantages and were thus rapidly developed for cancer treatment. Many stimuli-responsive materials, such as nanopartides, polymers, and inorganic materials, have been applied as caps and gatekeepers to control drug release from MSNs. This review presents an overview of the recent progress in the production of pH-responsive MSNs based on the pH gradient between normal tissues and the tumor microenvironment. Four main categories of gatekeepers can respond to acidic conditions. These categories will be described in detail.展开更多
Interactions of plasma with the walls lead to particle release by various mechanisms and the amount of impurities in the plasma core limits the performance of the device. It is very important to get the particle fluxe...Interactions of plasma with the walls lead to particle release by various mechanisms and the amount of impurities in the plasma core limits the performance of the device. It is very important to get the particle fluxes for understanding the releasing mechanisms of impurities. The spectroscopic measurements to determine the impurity influx from localized surfaces in tokamak plasma is described in detail in Ref. Determined the origin of the chromium influxes by this method in ASDEX during ICRF heating were reported in Ref.展开更多
Poly(styrene-glycidyl methacrylate) particles having bowl-shaped hollow structures were synthesized by swollen seed emulsion polymerization. The PS emulsion synthesized through soap-free emulsion polymerization was sw...Poly(styrene-glycidyl methacrylate) particles having bowl-shaped hollow structures were synthesized by swollen seed emulsion polymerization. The PS emulsion synthesized through soap-free emulsion polymerization was swollen by toluene, and then the mixture of second monomers was added under polymerization condition. So a thin shell of poly(styrene-glycidyl methacrylate) cross-linked by triethylene glycol diacrylate was formed around the swollen PS particle. The bowl-shaped particles were obtained after the collapsing of the thin shell when the toluene emanated from the particles, but the shapes were effected by the degrees of cross-linking. The shape of the particles was observed by SEM. The release behavior of solvent from the particles was examined by TG.展开更多
Peripheral nerve functional recovery after nerve injury generally requires multiple growth factors by synergistic effect.However,the optical combination of multiple synergistic growth factors for axonal regeneration h...Peripheral nerve functional recovery after nerve injury generally requires multiple growth factors by synergistic effect.However,the optical combination of multiple synergistic growth factors for axonal regeneration has been scarcely considered up to now.Meanwhile,the use of growth factors in promoting nerve regeneration was limited by its short biological half-life in vivo,its vulnerability to structure disruption or hydrolyzation,leading to loss of bioactivity.Herein,a novel polymeric nanoparticle delivery system composed of heparin andε-poly-L-lysine(PL)was prepared for control release of nerve growth factor(NGF)and basic fibroblast growth factor(bFGF).The nanoparticles were synthesized by polyelectrolyte complexation in aqueous solution at room temperature,followed by cross-linking with biological genipin.The obtained nanoparticles had a spherical shape,with a mean diameter of about 246 nm,and high growth factors encapsulation efficiency as well as good stability.NGF and bFGF were encapsulated in the nanoparticles and showed a continuous and slow release behavior in vitro.The bioactivities of the released growth factors were evaluated,and exhibited the synergistic effect.The controlled release of the dual synergistic growth factors would improve the treatment of peripheral nerve injury to mimic the natural cellular microenvironments.展开更多
Particle size, porosity, and the initial phosphorus concentration in sediments are the main factors affecting phosphorus release flux through the sediment-water interface. Sediments can be physically divided to muddy ...Particle size, porosity, and the initial phosphorus concentration in sediments are the main factors affecting phosphorus release flux through the sediment-water interface. Sediments can be physically divided to muddy and sandy matters, and the adsorption-desorption capacity of sediment with phosphorus depends on particle size. According to phosphorus adsorption-desorption experiments, phosphorus sorption capacity of the sediment decreases with the increase of particle dimension. But among the size-similar particles, sediment with a bigger particle size has the larger initial phosphorus release rate. In terms of muddy and sandy sediments, there are inversely proportional relationships between the release rate and the flux. Due to the contact of surface sediment and the overlying water, the release flux from the sediment is either from direct desorption of surface sediment layer or from the diffusion of pore water in the sediment layer, which is mainly determined by sediment particle size and porosity. Generally, static phosphorus release process may include two stages: the first is the initial release. As for coarse particles, phosphorus is desorbed from surface sediment. And for fine particles, phosphorus concentration in water often decreases, mainly from pore water by the molecular diffusion. During the second stage, pore water flows faster in coarse sediment, and phosphorus is easy to desorb from the surface of the particles as diffusion dominates. For the smaller liquid-solid ratio of fine particles and the larger amount of phosphorus adsorption, the release flux from pore water due to diffusion is very small with longer sorption duration.展开更多
The chemical structure of end groups influenced the phase transition temperature of thermoresponsive polymers. We demonstrated a strategy for the preparation of the pH/thermo-responsive polymeric nanoparticles via sub...The chemical structure of end groups influenced the phase transition temperature of thermoresponsive polymers. We demonstrated a strategy for the preparation of the pH/thermo-responsive polymeric nanoparticles via subtle modification of end groups of thermoresponsive polymer segments with a carboxyl group and revealed its potential application for enhanced intracellular drug delivery. By developing a polymeric nanoparticle composed of poly(aliphatic ester) as the inner core and thermoresponsive polyphosphoester as the outer shell, we showed that end groups of thermoresponsive polyphosphoester segments modified by carboxyl groups exhibited a pH/thermo-responsive behavior due to the hydrophilic to hydrophobic transitions of the end groups in response to the pH. Moreover, by encapsulating doxorubicin into the hydrophobic core of such pH/thermo-responsive polymer nanoparticles, their intracellular delivery and cytotoxicity to wild-type and drug-resistant tumor cells were significantly enhanced through the phase-transition-dependent drug release that was triggered by endosomal/lysosomal pH. This novel strategy and the multi-responsive polymer nanoparticles achieved by the subtle chain-terminal modification of thermoresponsive polymers provide a smart platform for biomedical applications.展开更多
A mesoporous silica/gold (MSN/Au) nanocomposite was designed for photo- controlled drug delivery targeted specifically at tumor cells. The MSN/Au nanocomposite was composed of MSN-based drug carriers and gold nanopa...A mesoporous silica/gold (MSN/Au) nanocomposite was designed for photo- controlled drug delivery targeted specifically at tumor cells. The MSN/Au nanocomposite was composed of MSN-based drug carriers and gold nanoparticle (AuNP)-based indicators. While the MSN-based drug carrier was a mesoporous silica nanoparticle immobilized with photo-switchable azobenzene (Azo) moieties, the AuNP-based indicator was a fluorescence-quenched AuNP modified with a matrix metalloproteinase (MMP) substrate and poly(ethylene glycol). The two kinds of nanoparticles were connected by an α,β cyclodextrin (α,β CD) dimer "bridge." In vitro studies demonstrated that the nanocomposite specifically interacted with tumor sites overexpressing MMP-2, which enabled guidance of the subsequent UV light irradiation for releasing entrapped drugs. Through integration of the AuNP-based indicator and the MSN-based drug carrier, the MSN/Au nanocomposite could precisely localize the released drug to tumor sites, thereby significantly improving therapeutic efficacy.展开更多
基金supported by the Chinese Natural Science Foundation Project (Grant No. 30970784 and 81171455)a National Distinguished Young Scholars Grant (Grant No. 31225009) from the National Natural Science Foundation of China+5 种基金the National Key Basic Research Program of China (Grant No. 2009CB930200)the Chinese Academy of Sciences (CAS) ‘Hundred Talents Program’ (Grant No. 07165111ZX)the CAS Knowledge Innovation Program, and the State HighTech Development Plan (Grant No. 2012AA020804)the ‘Strategic Priority Research Program’ of the Chinese Academy of Sciences (Grant No. XDA09030301)NIH/NIMHD 8 G12 MD007597USAMRMC W81XWH-10-1-0767 grants
文摘In the fight against cancer, controlled drug delivery systems have emerged to enhance the therapeutic efficacy and safety of anti-cancer drugs. Among these systems, mesoporous silica nanoparticles (MSNs) with a functional surface possess obvious advantages and were thus rapidly developed for cancer treatment. Many stimuli-responsive materials, such as nanopartides, polymers, and inorganic materials, have been applied as caps and gatekeepers to control drug release from MSNs. This review presents an overview of the recent progress in the production of pH-responsive MSNs based on the pH gradient between normal tissues and the tumor microenvironment. Four main categories of gatekeepers can respond to acidic conditions. These categories will be described in detail.
文摘Interactions of plasma with the walls lead to particle release by various mechanisms and the amount of impurities in the plasma core limits the performance of the device. It is very important to get the particle fluxes for understanding the releasing mechanisms of impurities. The spectroscopic measurements to determine the impurity influx from localized surfaces in tokamak plasma is described in detail in Ref. Determined the origin of the chromium influxes by this method in ASDEX during ICRF heating were reported in Ref.
文摘Poly(styrene-glycidyl methacrylate) particles having bowl-shaped hollow structures were synthesized by swollen seed emulsion polymerization. The PS emulsion synthesized through soap-free emulsion polymerization was swollen by toluene, and then the mixture of second monomers was added under polymerization condition. So a thin shell of poly(styrene-glycidyl methacrylate) cross-linked by triethylene glycol diacrylate was formed around the swollen PS particle. The bowl-shaped particles were obtained after the collapsing of the thin shell when the toluene emanated from the particles, but the shapes were effected by the degrees of cross-linking. The shape of the particles was observed by SEM. The release behavior of solvent from the particles was examined by TG.
基金supported by the National High Technology Research and Development Program of China(2012AA020502)National Natural Science Foundation of China(81171457,81371687)+3 种基金Natural Science Foundation of Jiangsu Province of China(BK20130390)Natural Science Foundation of Nantong City(BK2012089)the Natural Science Research Program of Jiangsu Education Department(13KJB310014)the Priority of Academic Program Development of Jiangsu Higher Education Institutions and Natural Science Foundation of Nantong University(10Z014)
文摘Peripheral nerve functional recovery after nerve injury generally requires multiple growth factors by synergistic effect.However,the optical combination of multiple synergistic growth factors for axonal regeneration has been scarcely considered up to now.Meanwhile,the use of growth factors in promoting nerve regeneration was limited by its short biological half-life in vivo,its vulnerability to structure disruption or hydrolyzation,leading to loss of bioactivity.Herein,a novel polymeric nanoparticle delivery system composed of heparin andε-poly-L-lysine(PL)was prepared for control release of nerve growth factor(NGF)and basic fibroblast growth factor(bFGF).The nanoparticles were synthesized by polyelectrolyte complexation in aqueous solution at room temperature,followed by cross-linking with biological genipin.The obtained nanoparticles had a spherical shape,with a mean diameter of about 246 nm,and high growth factors encapsulation efficiency as well as good stability.NGF and bFGF were encapsulated in the nanoparticles and showed a continuous and slow release behavior in vitro.The bioactivities of the released growth factors were evaluated,and exhibited the synergistic effect.The controlled release of the dual synergistic growth factors would improve the treatment of peripheral nerve injury to mimic the natural cellular microenvironments.
基金supported by the National Natural Science Foundation of China(Grant No.10972134)the State Key Program of National Natural Science of China(Grant No.11032007)The Shanghai Program for Innovative Research Team in Universities is also acknowledged
文摘Particle size, porosity, and the initial phosphorus concentration in sediments are the main factors affecting phosphorus release flux through the sediment-water interface. Sediments can be physically divided to muddy and sandy matters, and the adsorption-desorption capacity of sediment with phosphorus depends on particle size. According to phosphorus adsorption-desorption experiments, phosphorus sorption capacity of the sediment decreases with the increase of particle dimension. But among the size-similar particles, sediment with a bigger particle size has the larger initial phosphorus release rate. In terms of muddy and sandy sediments, there are inversely proportional relationships between the release rate and the flux. Due to the contact of surface sediment and the overlying water, the release flux from the sediment is either from direct desorption of surface sediment layer or from the diffusion of pore water in the sediment layer, which is mainly determined by sediment particle size and porosity. Generally, static phosphorus release process may include two stages: the first is the initial release. As for coarse particles, phosphorus is desorbed from surface sediment. And for fine particles, phosphorus concentration in water often decreases, mainly from pore water by the molecular diffusion. During the second stage, pore water flows faster in coarse sediment, and phosphorus is easy to desorb from the surface of the particles as diffusion dominates. For the smaller liquid-solid ratio of fine particles and the larger amount of phosphorus adsorption, the release flux from pore water due to diffusion is very small with longer sorption duration.
基金supported by the Ministry of Science and Technology of China(2010CB934001)the National Natural Science Foundation of China(51125012,51203145)
文摘The chemical structure of end groups influenced the phase transition temperature of thermoresponsive polymers. We demonstrated a strategy for the preparation of the pH/thermo-responsive polymeric nanoparticles via subtle modification of end groups of thermoresponsive polymer segments with a carboxyl group and revealed its potential application for enhanced intracellular drug delivery. By developing a polymeric nanoparticle composed of poly(aliphatic ester) as the inner core and thermoresponsive polyphosphoester as the outer shell, we showed that end groups of thermoresponsive polyphosphoester segments modified by carboxyl groups exhibited a pH/thermo-responsive behavior due to the hydrophilic to hydrophobic transitions of the end groups in response to the pH. Moreover, by encapsulating doxorubicin into the hydrophobic core of such pH/thermo-responsive polymer nanoparticles, their intracellular delivery and cytotoxicity to wild-type and drug-resistant tumor cells were significantly enhanced through the phase-transition-dependent drug release that was triggered by endosomal/lysosomal pH. This novel strategy and the multi-responsive polymer nanoparticles achieved by the subtle chain-terminal modification of thermoresponsive polymers provide a smart platform for biomedical applications.
基金This work was financially supported by the National Natural Science Foundation of China (Nos. 51125014 and 51233003), National Basic Research Program of China (No. 2011CB606202), the Ministry of Education of China (No. 20120141130003), and Fundamental Research Funds for the Central Universities of China (Nos. 2014203020201 and 2014203020204).
文摘A mesoporous silica/gold (MSN/Au) nanocomposite was designed for photo- controlled drug delivery targeted specifically at tumor cells. The MSN/Au nanocomposite was composed of MSN-based drug carriers and gold nanoparticle (AuNP)-based indicators. While the MSN-based drug carrier was a mesoporous silica nanoparticle immobilized with photo-switchable azobenzene (Azo) moieties, the AuNP-based indicator was a fluorescence-quenched AuNP modified with a matrix metalloproteinase (MMP) substrate and poly(ethylene glycol). The two kinds of nanoparticles were connected by an α,β cyclodextrin (α,β CD) dimer "bridge." In vitro studies demonstrated that the nanocomposite specifically interacted with tumor sites overexpressing MMP-2, which enabled guidance of the subsequent UV light irradiation for releasing entrapped drugs. Through integration of the AuNP-based indicator and the MSN-based drug carrier, the MSN/Au nanocomposite could precisely localize the released drug to tumor sites, thereby significantly improving therapeutic efficacy.