Due to the oxygen storage and release properties,cerium zirconium mixed oxides are recognized as the key material in automotive three-way catalysts.To reveal the effects of co-precipitation temperature on structure,ph...Due to the oxygen storage and release properties,cerium zirconium mixed oxides are recognized as the key material in automotive three-way catalysts.To reveal the effects of co-precipitation temperature on structure,physical and chemical properties of multi-doped cerium zirconium mixed oxides,a series of La and Y doped cerium zirconium mixed oxides(CZLYs)were synthesized via a co-precipitation method,and the physical and chemical properties of CZLYs were systemically characterized by XRD,N_(2) adsorption−desorption,TEM,XPS,oxygen storage capacity(OSC)and hydrogen temperature programmed reduction(H_(2)-TPR).The results show that co-precipitation temperature is an important parameter to influence the crystal size,oxygen storage capacity and thermal stability of CZLYs.When the co-precipitation temperature was 60℃,the best redox properties and thermal stability of CZLYs were obtained.After thermal treatment at 1100℃for 10 h,the specific surface area and oxygen storage capacity of the corresponding aged sample were 15.42 m^(2)/g and 497.7μmol/g,respectively.In addition,a mechanism was proposed to reveal the effects of co-precipitation temperature on the structure and properties of CZLYs.展开更多
This paper presents results of a study on the mechanical properties of sandy and gravely soils within the Cordillera Blanca, Peru. The soils were divided into groups according to their origin(glacial, fluvial, or debr...This paper presents results of a study on the mechanical properties of sandy and gravely soils within the Cordillera Blanca, Peru. The soils were divided into groups according to their origin(glacial, fluvial, or debris flow). The grain size distribution of forty three soil samples was used to classify the soils according to the scheme of the Unified Soil Classification System(USCS). These distributions have then been used to estimate shear strength and hydraulic properties of the soils. There are clear differences between the soils which reflect their divergent origins. The glacial soils normally fit within one of two distinctive groups according to the proportion of fines(Group A, 7%-21.5%; Group B, 21%-65%). The estimation of shear strength at constant volume friction angle and peak shear strength of the glacial sediments with low content of fines was made using published data relating to the measured shear strength characteristics of soils with similar origins and grain size distributions. The estimated values were supported by measurements of the angle of repose taken from fourteen samples from two moraines and by shear tests on samples from one locality. The results of the grain size distribution werealso used to estimate the average hydraulic conductivity using the empirical Hazen formula which results were verified by field infiltration tests at two localities.展开更多
Nanoparticles drug delivery system has sustained and controlled release features as well as targeted drug delivery, which can change the characteristics of drug distribution in vivo. It can increase the stability of t...Nanoparticles drug delivery system has sustained and controlled release features as well as targeted drug delivery, which can change the characteristics of drug distribution in vivo. It can increase the stability of the drug and enhance drug bioavailability. The selective targeting of nanoparticles can be achieved through enhanced permeability and retention effect and a conjugated specific ligand or through the effects of physiological conditions, such as pH and temperature. Nanoparticles can be prepared by using a wide range of materials and can be used to encapsulate chemotherapeutic agents to reduce toxicity, which can be used for imaging, therapy, and diagnosis. In this research, recent progress on nanoparticles as a targeted drug delivery system will be reviewed, including positive-targeting, negative-targeting, and physicochemical-targeting used as anticancer drug carriers.展开更多
Molecular simulation of charged colloidal suspension is performed in NVT canonical ensemble using Monte Carlo method and primitive model. The well-known Derjaguin-Landau-Verwey- Overbeek theory is applied to account f...Molecular simulation of charged colloidal suspension is performed in NVT canonical ensemble using Monte Carlo method and primitive model. The well-known Derjaguin-Landau-Verwey- Overbeek theory is applied to account for effective interactions between particles. Effect of temperature, valance of micro-ions and the size of colloidal particles on the phase stability of the solution is investigated. The results indicate that the suspension is more stable at higher temperatures. On the other hand, for a more stable suspension to exist, lower micro- ion valance is favorable. For micro-ions of higher charge the number of aggregates and the number of particle in each of aggregate on average is higher. However for the best of our results larger colloidal particle are less stable. Comparing the results with theoretical formula considering the influence of surface curvature shows qualitative consistency.展开更多
基金the Hebei Key Research and Development Program,China(No.20374202D)the Hebei High Level Talent Team Building,China(No.205A1104H).
文摘Due to the oxygen storage and release properties,cerium zirconium mixed oxides are recognized as the key material in automotive three-way catalysts.To reveal the effects of co-precipitation temperature on structure,physical and chemical properties of multi-doped cerium zirconium mixed oxides,a series of La and Y doped cerium zirconium mixed oxides(CZLYs)were synthesized via a co-precipitation method,and the physical and chemical properties of CZLYs were systemically characterized by XRD,N_(2) adsorption−desorption,TEM,XPS,oxygen storage capacity(OSC)and hydrogen temperature programmed reduction(H_(2)-TPR).The results show that co-precipitation temperature is an important parameter to influence the crystal size,oxygen storage capacity and thermal stability of CZLYs.When the co-precipitation temperature was 60℃,the best redox properties and thermal stability of CZLYs were obtained.After thermal treatment at 1100℃for 10 h,the specific surface area and oxygen storage capacity of the corresponding aged sample were 15.42 m^(2)/g and 497.7μmol/g,respectively.In addition,a mechanism was proposed to reveal the effects of co-precipitation temperature on the structure and properties of CZLYs.
基金Financial support for the contribution was provided by Grant Agency of the Czech Republic (Project No. GACR P209/11/1000)
文摘This paper presents results of a study on the mechanical properties of sandy and gravely soils within the Cordillera Blanca, Peru. The soils were divided into groups according to their origin(glacial, fluvial, or debris flow). The grain size distribution of forty three soil samples was used to classify the soils according to the scheme of the Unified Soil Classification System(USCS). These distributions have then been used to estimate shear strength and hydraulic properties of the soils. There are clear differences between the soils which reflect their divergent origins. The glacial soils normally fit within one of two distinctive groups according to the proportion of fines(Group A, 7%-21.5%; Group B, 21%-65%). The estimation of shear strength at constant volume friction angle and peak shear strength of the glacial sediments with low content of fines was made using published data relating to the measured shear strength characteristics of soils with similar origins and grain size distributions. The estimated values were supported by measurements of the angle of repose taken from fourteen samples from two moraines and by shear tests on samples from one locality. The results of the grain size distribution werealso used to estimate the average hydraulic conductivity using the empirical Hazen formula which results were verified by field infiltration tests at two localities.
基金Supported by a grant from the foundation of Guangzhou Municipal Key Project for Special Scientific Plan(No.2008A1-E4101)
文摘Nanoparticles drug delivery system has sustained and controlled release features as well as targeted drug delivery, which can change the characteristics of drug distribution in vivo. It can increase the stability of the drug and enhance drug bioavailability. The selective targeting of nanoparticles can be achieved through enhanced permeability and retention effect and a conjugated specific ligand or through the effects of physiological conditions, such as pH and temperature. Nanoparticles can be prepared by using a wide range of materials and can be used to encapsulate chemotherapeutic agents to reduce toxicity, which can be used for imaging, therapy, and diagnosis. In this research, recent progress on nanoparticles as a targeted drug delivery system will be reviewed, including positive-targeting, negative-targeting, and physicochemical-targeting used as anticancer drug carriers.
文摘Molecular simulation of charged colloidal suspension is performed in NVT canonical ensemble using Monte Carlo method and primitive model. The well-known Derjaguin-Landau-Verwey- Overbeek theory is applied to account for effective interactions between particles. Effect of temperature, valance of micro-ions and the size of colloidal particles on the phase stability of the solution is investigated. The results indicate that the suspension is more stable at higher temperatures. On the other hand, for a more stable suspension to exist, lower micro- ion valance is favorable. For micro-ions of higher charge the number of aggregates and the number of particle in each of aggregate on average is higher. However for the best of our results larger colloidal particle are less stable. Comparing the results with theoretical formula considering the influence of surface curvature shows qualitative consistency.