In current research,the interactive effects of different parameters such as melt overheating temperature,the location of gating system and incorporation of the grain refiner in bar and micro-powder form on the mechani...In current research,the interactive effects of different parameters such as melt overheating temperature,the location of gating system and incorporation of the grain refiner in bar and micro-powder form on the mechanical and structural characteristics of commercially pure aluminium are examined.Results show that increasing the melt temperature as well as employing a gating system with higher heat transfer rate increases the ultimate tensile strength(UTS)of the pure aluminium by 7%.Also,the introduction of 2wt%Al–5Ti–1B grain refiner in bar form into the overheated melt enhances the UTS values by two times,while incorporating 2wt%Al–5Ti–1B grain refiner in micro-powder form leads to achieving 32%higher UTS compared to the samples with grain refiner in the bar form due to the elimination of Al3Ti brittle phase,as confirmed by XRD patterns and SEM fracture surface images.展开更多
Quantitative prediction of distribution function and adhesionefficiency of particles around a rising bubble in slurry systems ispresented in this work. By solving the convection-diffusion equation(Fokker-Planck equati...Quantitative prediction of distribution function and adhesionefficiency of particles around a rising bubble in slurry systems ispresented in this work. By solving the convection-diffusion equation(Fokker-Planck equation), the influence of Brownian diffusivity offine particles on concentration distribution and adhesion efficiencyis demonstrated with the hydrodynamic force and van der Waalsattractive potential between particles and bubble considered. It isfound that two kinds of mechanism dominate the adhesion process ofparticles on bubble according to different Peclet number or size ofparticles and bubble, as well as other properties of the slurrysystems. In addition, the viscosity ratio of bubble to the suspendingfluid was found to have obvious influence on particle adhesion.展开更多
Laser Doppler Anemometer has been used to measure the flow field characteristics near the interface around a moving bubble in the presence of ultrafine particles. In order to model a moving bubble, the bubble was fixe...Laser Doppler Anemometer has been used to measure the flow field characteristics near the interface around a moving bubble in the presence of ultrafine particles. In order to model a moving bubble, the bubble was fixed into the counter flow liquid by a metal mesh. Experimental materials are air and water, and the particles are complex oxidate powder. Experiments were carried out under the operating conditions: the liquid flow velocity u 0 is 12.6 cm/s, the equivalent diameter d e is 0.6 cm, the mass concentration of particle is 0.2 0 0 ,the average particle diameter is about 10 nm and the density is 2 g/cm 3. The velocity profiles of both frontal and tail vortex areas were measured respectively. The experimental results show that the velocity fields are obviously changed in the existence of particles. In the frontal area of the bubble, both tangential and normal velocities decrease due to the presence of particles, but in tail vortex area, the tangential velocities increase remarkably, and normal velocities rise gradually from the center towards the fringe in the opposite tendency to that of no particles. The influences of flow field change in the presence of particles on gas liquid mass transfer are analyzed and discussed.展开更多
文摘In current research,the interactive effects of different parameters such as melt overheating temperature,the location of gating system and incorporation of the grain refiner in bar and micro-powder form on the mechanical and structural characteristics of commercially pure aluminium are examined.Results show that increasing the melt temperature as well as employing a gating system with higher heat transfer rate increases the ultimate tensile strength(UTS)of the pure aluminium by 7%.Also,the introduction of 2wt%Al–5Ti–1B grain refiner in bar form into the overheated melt enhances the UTS values by two times,while incorporating 2wt%Al–5Ti–1B grain refiner in micro-powder form leads to achieving 32%higher UTS compared to the samples with grain refiner in the bar form due to the elimination of Al3Ti brittle phase,as confirmed by XRD patterns and SEM fracture surface images.
基金Supported by the National Natural Science Foundation of China (No. 20126010).
文摘Quantitative prediction of distribution function and adhesionefficiency of particles around a rising bubble in slurry systems ispresented in this work. By solving the convection-diffusion equation(Fokker-Planck equation), the influence of Brownian diffusivity offine particles on concentration distribution and adhesion efficiencyis demonstrated with the hydrodynamic force and van der Waalsattractive potential between particles and bubble considered. It isfound that two kinds of mechanism dominate the adhesion process ofparticles on bubble according to different Peclet number or size ofparticles and bubble, as well as other properties of the slurrysystems. In addition, the viscosity ratio of bubble to the suspendingfluid was found to have obvious influence on particle adhesion.
文摘Laser Doppler Anemometer has been used to measure the flow field characteristics near the interface around a moving bubble in the presence of ultrafine particles. In order to model a moving bubble, the bubble was fixed into the counter flow liquid by a metal mesh. Experimental materials are air and water, and the particles are complex oxidate powder. Experiments were carried out under the operating conditions: the liquid flow velocity u 0 is 12.6 cm/s, the equivalent diameter d e is 0.6 cm, the mass concentration of particle is 0.2 0 0 ,the average particle diameter is about 10 nm and the density is 2 g/cm 3. The velocity profiles of both frontal and tail vortex areas were measured respectively. The experimental results show that the velocity fields are obviously changed in the existence of particles. In the frontal area of the bubble, both tangential and normal velocities decrease due to the presence of particles, but in tail vortex area, the tangential velocities increase remarkably, and normal velocities rise gradually from the center towards the fringe in the opposite tendency to that of no particles. The influences of flow field change in the presence of particles on gas liquid mass transfer are analyzed and discussed.