Efficacious regulation of the geometric and electronic structures of carbon nanomaterials via the introduction of defects and their synergy is essential to achieving good electrochemical performance.However,the guidel...Efficacious regulation of the geometric and electronic structures of carbon nanomaterials via the introduction of defects and their synergy is essential to achieving good electrochemical performance.However,the guidelines for designing hybrid materials with advantageous structures and the fundamental understanding of their electrocatalytic mechanisms remain unclear.Herein,superfine Pt and PtCu nanoparticles supported by novel S,N‐co‐doped multi‐walled CNT(MWCNTs)were prepared through the innovative pyrolysis of a poly(3,4‐ethylenedioxythiophene)/polyaniline copolymer as a source of S and N.The uniform wrapping of the copolymer around the MWCNTs provides a high density of evenly distributed defects on the surface after the pyrolysis treatment,facilitating the uniform distribution of ultrafine Pt and PtCu nanoparticles.Remarkably,the Pt_(1)Cu_(2)/SN‐MWCNTs show an obviously larger electroactive surface area and higher mass activity,stability,and CO poisoning resistance in methanol oxidation compared to Pt/SN‐MWCNTs,Pt/S‐MWCNTs,Pt/N‐MWCNTs,and commercial Pt/C.Density functional theory studies confirm that the co‐doping of S and N considerably deforms the CNTs and polarizes the adjacent C atoms.Consequently,both the adsorption of Pt1Cu2 onto the SN‐MWCNTs and the subsequent adsorption of methanol are enhanced;in addition,the catalytic activity of Pt_(1)Cu_(2)/SN‐MWCNTs for methanol oxidation is thermodynamically and kinetically more favorable than that of its CNT and N‐CNT counterparts.This work provides a novel method to fabricate high‐performance fuel cell electrocatalysts with highly dispersed and stable Pt‐based nanoparticles on a carbon substrate.展开更多
Our recent theoretical studies have screened out CuCs-doped Ag-based promising catalysts for ethylene epoxidation[ACS Catal.11,3371(2021)].The theoretical results were based on surface modeling,while in the actual rea...Our recent theoretical studies have screened out CuCs-doped Ag-based promising catalysts for ethylene epoxidation[ACS Catal.11,3371(2021)].The theoretical results were based on surface modeling,while in the actual reaction process Ag catalysts are particle shaped.In this work,we combine density functional theory(DFT),Wulff construction theory,and micro kinetic analysis to study the catalytic performance of Ag catalysts at the particle model.It demonstrates that the CuCs-doped Ag catalysts are superior to pure Ag catalysts in terms of selectivity and activity,which is further proved by experimental validation.The characterization analysis finds that both Cu and Cs dopant promote particle growth as well as particle dispersion,resulting in a grain boundary-rich Ag particle.Besides,CuCs also facilitate electrophilic atomic oxygen formation on catalyst surface,which is benefitial for ethylene oxide formation and desorption.Our work provides a case study for catalyst design by combining theory and experiment.展开更多
文摘Efficacious regulation of the geometric and electronic structures of carbon nanomaterials via the introduction of defects and their synergy is essential to achieving good electrochemical performance.However,the guidelines for designing hybrid materials with advantageous structures and the fundamental understanding of their electrocatalytic mechanisms remain unclear.Herein,superfine Pt and PtCu nanoparticles supported by novel S,N‐co‐doped multi‐walled CNT(MWCNTs)were prepared through the innovative pyrolysis of a poly(3,4‐ethylenedioxythiophene)/polyaniline copolymer as a source of S and N.The uniform wrapping of the copolymer around the MWCNTs provides a high density of evenly distributed defects on the surface after the pyrolysis treatment,facilitating the uniform distribution of ultrafine Pt and PtCu nanoparticles.Remarkably,the Pt_(1)Cu_(2)/SN‐MWCNTs show an obviously larger electroactive surface area and higher mass activity,stability,and CO poisoning resistance in methanol oxidation compared to Pt/SN‐MWCNTs,Pt/S‐MWCNTs,Pt/N‐MWCNTs,and commercial Pt/C.Density functional theory studies confirm that the co‐doping of S and N considerably deforms the CNTs and polarizes the adjacent C atoms.Consequently,both the adsorption of Pt1Cu2 onto the SN‐MWCNTs and the subsequent adsorption of methanol are enhanced;in addition,the catalytic activity of Pt_(1)Cu_(2)/SN‐MWCNTs for methanol oxidation is thermodynamically and kinetically more favorable than that of its CNT and N‐CNT counterparts.This work provides a novel method to fabricate high‐performance fuel cell electrocatalysts with highly dispersed and stable Pt‐based nanoparticles on a carbon substrate.
基金This work is supported by PetroChina Innovation Foundation(2019D-5007-0403).
文摘Our recent theoretical studies have screened out CuCs-doped Ag-based promising catalysts for ethylene epoxidation[ACS Catal.11,3371(2021)].The theoretical results were based on surface modeling,while in the actual reaction process Ag catalysts are particle shaped.In this work,we combine density functional theory(DFT),Wulff construction theory,and micro kinetic analysis to study the catalytic performance of Ag catalysts at the particle model.It demonstrates that the CuCs-doped Ag catalysts are superior to pure Ag catalysts in terms of selectivity and activity,which is further proved by experimental validation.The characterization analysis finds that both Cu and Cs dopant promote particle growth as well as particle dispersion,resulting in a grain boundary-rich Ag particle.Besides,CuCs also facilitate electrophilic atomic oxygen formation on catalyst surface,which is benefitial for ethylene oxide formation and desorption.Our work provides a case study for catalyst design by combining theory and experiment.