期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
多粒度粒球粗糙集模型 被引量:1
1
作者 蒋珊珊 林国平 +1 位作者 林艺东 寇毅 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2024年第2期197-208,共12页
基于粒球计算的粗糙集理论作为知识发现和数据挖掘的重要工具之一,已成功地应用于标记预测、属性约简等。而现有的粒球粗糙集模型仅仅是从单粒度出发,无法从多粒度角度对数据进行分析和处理,实际生活中仍有很多应用场景需从多粒度角度... 基于粒球计算的粗糙集理论作为知识发现和数据挖掘的重要工具之一,已成功地应用于标记预测、属性约简等。而现有的粒球粗糙集模型仅仅是从单粒度出发,无法从多粒度角度对数据进行分析和处理,实际生活中仍有很多应用场景需从多粒度角度进行思考。将粒球计算思想结合到多粒度粗糙集模型,提出了多粒度粒球粗糙集模型,并讨论了该模型的相关性质。该模型通过纯度的设定对数据进行粒球划分,能够有效地刻画数据之间的内在联系,以此设计多粒度粒球粗糙集的正域生成算法。实验分析表明该模型的可行性和有效性。 展开更多
关键词 计算 粒球粗糙集 粗糙集 纯度
下载PDF
基于异类粒球分离度的自适应属性约简
2
作者 黄兵 孙可 《闽南师范大学学报(自然科学版)》 2024年第3期1-16,共16页
属性约简是处理大规模数据集的关键步骤,与传统的邻域粗糙集(NRS)相比,粒球邻域粗糙集(GBNRS)可以显著提高属性约简的性能.然而,目前GBNRS属性约简算法生成了太多不必要的粒球;从而极大降低了算法运行效率.文章首先定义了一种新的粒球... 属性约简是处理大规模数据集的关键步骤,与传统的邻域粗糙集(NRS)相比,粒球邻域粗糙集(GBNRS)可以显著提高属性约简的性能.然而,目前GBNRS属性约简算法生成了太多不必要的粒球;从而极大降低了算法运行效率.文章首先定义了一种新的粒球质量指标来控制生成自适应数量的粒球;然后通过粒球对样本集进行划分,将不同类别的样本点放入不同类别的粒球;最后根据不同属性集合下粒球中正域样本的数量来进行前向属性约简.为了验证算法的有效性,在12个真实数据集上将提出的算法与其他NRS属性约简算法进行了对比实验.实验结果表明,所提出的算法有更高的精度和更快的运行效率. 展开更多
关键词 自适应 属性约简 邻域粗糙集 邻域粗糙集 分离度
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部