期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
共找到
1
篇文章
<
1
>
每页显示
20
50
100
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
显示方式:
文摘
详细
列表
相关度排序
被引量排序
时效性排序
改进的基于元学习的小样本目标检测法在废品识别分类中的应用研究
1
作者
孟青
于瓅
《电脑知识与技术》
2022年第32期9-12,共4页
针对传统R-CNN泛化能力弱等问题,首先对传统的R-CNN算法进行改进,运用元学习的方法,将从数据丰富的基类中学习到的元知识转移到数据稀缺的新类中。对粗粒度原型匹配网络进行改进,它使用基于度量学习的非线性分类器而不是传统的线性目标...
针对传统R-CNN泛化能力弱等问题,首先对传统的R-CNN算法进行改进,运用元学习的方法,将从数据丰富的基类中学习到的元知识转移到数据稀缺的新类中。对粗粒度原型匹配网络进行改进,它使用基于度量学习的非线性分类器而不是传统的线性目标分类器来处理查询图像中锚和新类之间的相似度,从而提高了小样本新类候选框的召回率。对细粒度原型匹配网络进行改进,添加了一个带有空间特征区域匹配和前景关注模块来处理噪声候选框和小样本新类的相似度,以解决候选框特征和类原型之间的空间区域不匹配,从而提高整体检测精度。然后设计了一个小样本分类器,将softmax分类器和设计的小样本分类器放在一起考虑,利用这两种检测器的优势,通过使用小样本检测器的来共享特征主干网络,联合学习一个Faster R-CNN检测头。而不是像以前的方法那样只使用softmax分类器。做到了在保持原有检测精度的基础上,扩大了检测范围。
展开更多
关键词
粗粒度原型匹配网络
细
粒度
原型
匹配
网络
度量学习
空间特征区域
匹配
前景关注模块
下载PDF
职称材料
题名
改进的基于元学习的小样本目标检测法在废品识别分类中的应用研究
1
作者
孟青
于瓅
机构
安徽理工大学
出处
《电脑知识与技术》
2022年第32期9-12,共4页
基金
安徽省自然科学基金(1608085ME116)。
文摘
针对传统R-CNN泛化能力弱等问题,首先对传统的R-CNN算法进行改进,运用元学习的方法,将从数据丰富的基类中学习到的元知识转移到数据稀缺的新类中。对粗粒度原型匹配网络进行改进,它使用基于度量学习的非线性分类器而不是传统的线性目标分类器来处理查询图像中锚和新类之间的相似度,从而提高了小样本新类候选框的召回率。对细粒度原型匹配网络进行改进,添加了一个带有空间特征区域匹配和前景关注模块来处理噪声候选框和小样本新类的相似度,以解决候选框特征和类原型之间的空间区域不匹配,从而提高整体检测精度。然后设计了一个小样本分类器,将softmax分类器和设计的小样本分类器放在一起考虑,利用这两种检测器的优势,通过使用小样本检测器的来共享特征主干网络,联合学习一个Faster R-CNN检测头。而不是像以前的方法那样只使用softmax分类器。做到了在保持原有检测精度的基础上,扩大了检测范围。
关键词
粗粒度原型匹配网络
细
粒度
原型
匹配
网络
度量学习
空间特征区域
匹配
前景关注模块
分类号
TP301.6 [自动化与计算机技术—计算机系统结构]
下载PDF
职称材料
题名
作者
出处
发文年
被引量
操作
1
改进的基于元学习的小样本目标检测法在废品识别分类中的应用研究
孟青
于瓅
《电脑知识与技术》
2022
0
下载PDF
职称材料
已选择
0
条
导出题录
引用分析
参考文献
引证文献
统计分析
检索结果
已选文献
上一页
1
下一页
到第
页
确定
用户登录
登录
IP登录
使用帮助
返回顶部