期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
网络态势评估的粗集分析模型 被引量:12
1
作者 卓莹 何明 龚正虎 《计算机工程与科学》 CSCD 北大核心 2012年第3期1-5,共5页
互联网的飞速发展导致系统复杂性随之增加。传统网络管理无法满足需求,基于融合的网络态势感知成为未来发展的必然方向。作为网络态势感知的核心,态势评估能够集成单元网管,提供全面宏观的网络状态视图,为决策提供支持。本文从网络态势... 互联网的飞速发展导致系统复杂性随之增加。传统网络管理无法满足需求,基于融合的网络态势感知成为未来发展的必然方向。作为网络态势感知的核心,态势评估能够集成单元网管,提供全面宏观的网络状态视图,为决策提供支持。本文从网络态势的特点和需求出发,引入粗集理论,借助其在机器学习、处理海量冗余信息、特征选择等方面的强大能力,提出了基于粗集分析的网络态势评估模型,给出形式化定义,并详细介绍了评估流程。评估流程包括建立决策表、数据预处理、态势因子选择、协调性判断、条件属性约简以及决策规则约简等步骤。实验验证了原型系统的效果和效率。 展开更多
关键词 网络态势评估 数据融合 粗集分析 模型
下载PDF
基于粗集数据分析的船型方案模糊优选法 被引量:2
2
作者 张维英 林焰 纪卓尚 《哈尔滨工程大学学报》 EI CAS CSCD 2004年第4期434-439,共6页
利用粗集理论,对多个船型方案的数据进行分析,消除冗余的属性、简化决策的目标;然后利用模糊模式识别理论与模糊关系优选理论,建立多目标多层次模糊优选模型,以n个决策的目标特征值作为最低层次的输入,依次以低层次的输出作为高层次的输... 利用粗集理论,对多个船型方案的数据进行分析,消除冗余的属性、简化决策的目标;然后利用模糊模式识别理论与模糊关系优选理论,建立多目标多层次模糊优选模型,以n个决策的目标特征值作为最低层次的输入,依次以低层次的输出作为高层次的输入,对每一层次的单元系统进行优选计算,最后用级别向量的特征值对各个船型方案进行排序,从中选择最优的船型方案.算例说明:模型建立正确、计算结果可信、各个方案的综合评判值离散性大.这一方法为合理选择船型方案提供了参考. 展开更多
关键词 数据分析 多目标多层次 船型 模糊优选
下载PDF
Meta-information generation in distributed information system 被引量:3
3
作者 苏健 高济 《Journal of Zhejiang University Science》 CSCD 2002年第5期532-537,共6页
The authors discuss the concept of meta information which is the description of information system or its subsystems, and proposes algorithms for meta information generation. Meta information can be generated in pa... The authors discuss the concept of meta information which is the description of information system or its subsystems, and proposes algorithms for meta information generation. Meta information can be generated in parallel mode and network computation can be used to accelerate meta information generation. Most existing rough set methods assume information system to be centralized and cannot be applied directly in distributed information system. Data integration, which is costly, is necessary for such existing methods. However, meta information integration will eliminate the need of data integration in many cases, since many rough set operations can be done straightforward based on meta information, and many existing methods can be modified based on meta information. 展开更多
关键词 Meta information Distributed information system Rough set
下载PDF
基于多视图模型的高校学风综合评价方法研究 被引量:2
4
作者 刘晓阳 靳江艳 +1 位作者 邓飞 吴盛亮 《教育教学论坛》 2020年第2期103-104,共2页
为了建立合理、有效的高校学风评价机制,文章提出一种基于多视图模型的高校学风综合评价方法。基于多视图、多层次的表达方式,以点阵形成面域(院系),面域层叠形成立体模型(学校),建立学风评价综合信息模型,实现评价信息的完整表达,并使... 为了建立合理、有效的高校学风评价机制,文章提出一种基于多视图模型的高校学风综合评价方法。基于多视图、多层次的表达方式,以点阵形成面域(院系),面域层叠形成立体模型(学校),建立学风评价综合信息模型,实现评价信息的完整表达,并使学风评价过程在一个模型中加以综合运算;以班级作为基础评价单位,以学期、学年为时间轴,利用粗集_层次分析法兼顾主观性和客观性因素进行权重计算,并采用多指标综合评价方法进行学风评价。 展开更多
关键词 高校学风 多视图模型 综合评价方法 _层次分析
下载PDF
Knowledge Discovery for Event Series Decision Based on Rough Set
5
作者 曾传华 裴峥 徐扬 《Journal of Donghua University(English Edition)》 EI CAS 2006年第6期93-96,共4页
To make decisions about event series is part of our life, and to discover knowledge from these decisions is of great significance in the field of controlling and decision-making. The paper takes event series as the ex... To make decisions about event series is part of our life, and to discover knowledge from these decisions is of great significance in the field of controlling and decision-making. The paper takes event series as the exterior form of movements with the dynamic attributes, and gets the Markov transition probabilities matrix to express those attributes with statistics. First, according to the matrix, the decision table is constructed. Then, by reducing attributes based on rough set theory, the decision table is reduced, and the decision rules are acquired as well. Finally we make the decision through defining rule distance and taking the minimum rule distance as decision principle. Followed is an example, which proves that the algorithm is feasible and effective to the event series decision. 展开更多
关键词 EVENT rough set Markov chain decision.
下载PDF
THRFuzzy:Tangential holoentropy-enabled rough fuzzy classifier to classification of evolving data streams 被引量:1
6
作者 Jagannath E.Nalavade T.Senthil Murugan 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第8期1789-1800,共12页
The rapid developments in the fields of telecommunication, sensor data, financial applications, analyzing of data streams, and so on, increase the rate of data arrival, among which the data mining technique is conside... The rapid developments in the fields of telecommunication, sensor data, financial applications, analyzing of data streams, and so on, increase the rate of data arrival, among which the data mining technique is considered a vital process. The data analysis process consists of different tasks, among which the data stream classification approaches face more challenges than the other commonly used techniques. Even though the classification is a continuous process, it requires a design that can adapt the classification model so as to adjust the concept change or the boundary change between the classes. Hence, we design a novel fuzzy classifier known as THRFuzzy to classify new incoming data streams. Rough set theory along with tangential holoentropy function helps in the designing the dynamic classification model. The classification approach uses kernel fuzzy c-means(FCM) clustering for the generation of the rules and tangential holoentropy function to update the membership function. The performance of the proposed THRFuzzy method is verified using three datasets, namely skin segmentation, localization, and breast cancer datasets, and the evaluated metrics, accuracy and time, comparing its performance with HRFuzzy and adaptive k-NN classifiers. The experimental results conclude that THRFuzzy classifier shows better classification results providing a maximum accuracy consuming a minimal time than the existing classifiers. 展开更多
关键词 data stream classification fuzzy rough set tangential holoentropy concept change
下载PDF
Personal Credit Risk .Scoring Model Based on Rough Set and Neural Network
7
作者 Hui Lu Shangfeng Yao 《Journal of Systems Science and Information》 2008年第4期307-314,共8页
In order to improve the precision of personal credit risk assessment, applying rough set and neural network to the credit risk scoring prediction problem in an attempt to suggest a new model with better classification... In order to improve the precision of personal credit risk assessment, applying rough set and neural network to the credit risk scoring prediction problem in an attempt to suggest a new model with better classification accuracy. To evaluate the prediction accuracy of the model, we compare its performance with those of SVM, linear discriminate analysis, logistic regression analysis, K-nearest neighbors, classification and regression tree, neural network and PCA-NN. The experimental results show the model have a very good prediction accuracy 展开更多
关键词 credit risk credit risk assessment rough set neural network 5-fold cross-validation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部