In order to reduce the probability of fault occurrence of local ventilation system in coal mine and prevent gas from exceeding the standard limit, an approach incorporating the reliability analysis, rough set theory, ...In order to reduce the probability of fault occurrence of local ventilation system in coal mine and prevent gas from exceeding the standard limit, an approach incorporating the reliability analysis, rough set theory, genetic algorithm (GA), and intelligent decision support system (IDSS) was used to establish and develop a fault diagnosis system of local ventilation in coal mine. Fault tree model was established and its reliability analysis was performed. The algorithms and software of key fault symptom and fault diagnosis rule acquiring were also analyzed and developed. Finally, a prototype system was developed and demonstrated by a mine instance. The research results indicate that the proposed approach in this paper can accurately and quickly find the fault reason in a local ventilation system of coal mines and can reduce difficulty of the fault diagnosis of the local ventilation system, which is significant to decrease gas exploding accidents in coal mines.展开更多
The model of grey multi-attribute group decision-making (MAGDM) is studied, in which the attribute values are grey numbers. Based on the generalized dominance-based rough set approach (G-DR- SA), a synthetic secur...The model of grey multi-attribute group decision-making (MAGDM) is studied, in which the attribute values are grey numbers. Based on the generalized dominance-based rough set approach (G-DR- SA), a synthetic security evaluation method is presented. With-the grey MAGDM security evaluation model as its foundation, the extension of technique for order performance by similarity to ideal solution (TOPSIS) integrates the evaluation of each decision-maker (DM) into a group's consensus and obtains the expected evaluation results of information system. Via the quality of sorting (QoS) of G-DRSA, the inherent information hidden in data is uncovered, and the security attribute weight and DMs' weight are rationally obtained. Taking the computer networks in a certain university as objects, the example illustrates that this method can effectively remove the bottleneck of the grey MAGDM model and has practical significance in the synthetic security evaluation.展开更多
Rough set theory plays an important role in knowledge discovery, but cannot deal with continuous attributes, thus discretization is a problem which we cannot neglect. And discretization of decision systems in rough se...Rough set theory plays an important role in knowledge discovery, but cannot deal with continuous attributes, thus discretization is a problem which we cannot neglect. And discretization of decision systems in rough set theory has some particular characteristics. Consistency must be satisfied and cuts for discretization is expected to be as small as possible. Consistent and minimal discretization problem is NP-complete. In this paper, an immune algorithm for the problem is proposed. The correctness and effectiveness were shown in experiments. The discretization method presented in this paper can also be used as a data pre- treating step for other symbolic knowledge discovery or machine learning methods other than rough set theory.展开更多
Discretization based on rough set theory aims to seek the possible minimum number of the cut set without weakening the indiscemibility of the original decision system. Optimization of discretization is an NP-complete ...Discretization based on rough set theory aims to seek the possible minimum number of the cut set without weakening the indiscemibility of the original decision system. Optimization of discretization is an NP-complete problem and the genetic algorithm is an appropriate method to solve it. In order to achieve optimal discretization, first the choice of the initial set of cut set is discussed, because a good initial cut set can enhance the efficiency and quality of the follow-up algorithm. Second, an effective heuristic genetic algorithm for discretization of continuous attributes of the decision table is proposed, which takes the significance of cut dots as heuristic information and introduces a novel operator to maintain the indiscernibility of the original decision system and enhance the local research ability of the algorithm. So the algorithm converges quickly and has global optimizing ability. Finally, the effectiveness of the algorithm is validated through experiment.展开更多
Aiming at the disadvantages of BP model in artificial neural networks applied to intelligent fault diagnosis, neural network fault diagnosis optimization method with rough sets and genetic algorithms are presented. Th...Aiming at the disadvantages of BP model in artificial neural networks applied to intelligent fault diagnosis, neural network fault diagnosis optimization method with rough sets and genetic algorithms are presented. The neural network nodes of the input layer can be calculated and simplified through rough sets theory; The neural network nodes of the middle layer are designed through genetic algorithms training; the neural network bottom-up weights and bias are obtained finally through the combination of genetic algorithms and BP algorithms. The analysis in this paper illustrates that the optimization method can improve the performance of the neural network fault diagnosis method greatly.展开更多
An intelligent response surface methodology (IRSM) was proposed to achieve the most competitive metal forming products, in which artificial intelligence technologies are introduced into the optimization process. It is...An intelligent response surface methodology (IRSM) was proposed to achieve the most competitive metal forming products, in which artificial intelligence technologies are introduced into the optimization process. It is used as simple and inexpensive replacement for computationally expensive simulation model. In IRSM, the optimal design space can be reduced greatly without any prior information about function distribution. Also, by identifying the approximation error region, new design points can be supplemented correspondingly to improve the response surface model effectively. The procedure is iterated until the accuracy reaches the desired threshold value. Thus, the global optimization can be performed based on this substitute model. Finally, we present an optimization design example about roll forming of a "U" channel product.展开更多
The traditional market segmentation was based on "transcendental rationality" or "Situational Rationality", studies shows that it had disadvantages. This paper states the "Situational" integrated rationality hyp...The traditional market segmentation was based on "transcendental rationality" or "Situational Rationality", studies shows that it had disadvantages. This paper states the "Situational" integrated rationality hypothesis and then comes up with the market segmenting models and classification algorithm basing on this hypothesis. This algorithm combined the Rough Set theory and Neural Networks in application, which overcome the dilemma that caused complicated network structure and long training time by only using Neural Networks and influenced the classification precision caused by noise disturbance by only using Rough Set methods. Finally, the paper did a comparison experiment between the traditional method and the method we came up, the results shows that the model and algorithm has its advantage on every aspects.展开更多
A new method based on rough set theory and genetic algorithm was proposedto predict the rock burst proneness. Nine influencing factors were first selected, and then,the decision table was set up. Attributes were reduc...A new method based on rough set theory and genetic algorithm was proposedto predict the rock burst proneness. Nine influencing factors were first selected, and then,the decision table was set up. Attributes were reduced by genetic algorithm. Rough setwas used to extract the simplified decision rules of rock burst proneness. Taking the practical engineering for example, the rock burst proneness was evaluated and predicted bydecision rules. Comparing the prediction results with the actual results, it shows that theproposed method is feasible and effective.展开更多
For garment or fabric appearance, the cloth smoothness grade is one of the most important performance factors in textile and garment community. In this paper, on the base of Rough Set Theory,a new objective method for...For garment or fabric appearance, the cloth smoothness grade is one of the most important performance factors in textile and garment community. In this paper, on the base of Rough Set Theory,a new objective method for fabric smoothness grade evaluation was constructed. The objective smoothness grading model took the parameters of 120 AATCC replicas' point-sampled models as the conditional attributes and formed the smoothness grading decision table. Then, NS discretization method and genetic algorithm reduction method were used in the attributes discretization and feature reduction. Finally, the grading model was expressed as simple and intuitional classification rules. The simulation results show the validity of the fabric smoothness grading system which is built on the use of rough sets.展开更多
Interval-valued data appear as a way to represent the uncertainty affecting the observed values. Dealing with interval-valued information systems is helpful to generalize the applications of rough set theory. Attribut...Interval-valued data appear as a way to represent the uncertainty affecting the observed values. Dealing with interval-valued information systems is helpful to generalize the applications of rough set theory. Attribute reduction is a key issue in analysis of interval-valued data. Existing attribute reduction methods for single-valued data are unsuitable for interval-valued data. So far, there have been few studies on attribute reduction methods for interval-valued data. In this paper, we propose a framework for attribute reduction in interval-valued data from the viewpoint of information theory. Some information theory concepts, including entropy, conditional entropy, and joint entropy, are given in interval-valued information systems. Based on these concepts, we provide an information theory view for attribute reduction in interval-valued information systems. Consequently, attribute reduction algorithms are proposed. Experiments show that the proposed framework is effective for attribute reduction in interval-valued information systems.展开更多
Rough set theory is an effective method to feature selection, which has recently fascinated many researchers. The essence of rough set approach to feature selection is to find a subset of the original features. It is,...Rough set theory is an effective method to feature selection, which has recently fascinated many researchers. The essence of rough set approach to feature selection is to find a subset of the original features. It is, however, an NP-hard problem finding a minimal subset of the features, and it is necessary to investigate effective and efficient heuristic algorithms. This paper presents a novel rough set approach to feature selection based on scatter search metaheuristic. The proposed method, called scatter search rough set attribute reduction (SSAR), is illustrated by 13 well known datasets from UCI machine learning repository. The proposed heuristic strategy is compared with typical attribute reduction methods including genetic algorithm, ant colony, simulated annealing, and Tabu search. Computational results demonstrate that our algorithm can provide efficient solution to find a minimal subset of the features and show promising and competitive performance on the considered datasets.展开更多
基金Projects 04JK197T supported by Shaanxi Education Bureau Science Foundation and 2005E202 by Shaanxi Science Foundation
文摘In order to reduce the probability of fault occurrence of local ventilation system in coal mine and prevent gas from exceeding the standard limit, an approach incorporating the reliability analysis, rough set theory, genetic algorithm (GA), and intelligent decision support system (IDSS) was used to establish and develop a fault diagnosis system of local ventilation in coal mine. Fault tree model was established and its reliability analysis was performed. The algorithms and software of key fault symptom and fault diagnosis rule acquiring were also analyzed and developed. Finally, a prototype system was developed and demonstrated by a mine instance. The research results indicate that the proposed approach in this paper can accurately and quickly find the fault reason in a local ventilation system of coal mines and can reduce difficulty of the fault diagnosis of the local ventilation system, which is significant to decrease gas exploding accidents in coal mines.
文摘The model of grey multi-attribute group decision-making (MAGDM) is studied, in which the attribute values are grey numbers. Based on the generalized dominance-based rough set approach (G-DR- SA), a synthetic security evaluation method is presented. With-the grey MAGDM security evaluation model as its foundation, the extension of technique for order performance by similarity to ideal solution (TOPSIS) integrates the evaluation of each decision-maker (DM) into a group's consensus and obtains the expected evaluation results of information system. Via the quality of sorting (QoS) of G-DRSA, the inherent information hidden in data is uncovered, and the security attribute weight and DMs' weight are rationally obtained. Taking the computer networks in a certain university as objects, the example illustrates that this method can effectively remove the bottleneck of the grey MAGDM model and has practical significance in the synthetic security evaluation.
基金Project supported by the National Basic Research Program (973)of China (No. 2002CB312106), China Postdoctoral Science Founda-tion (No. 2004035715), the Science & Technology Program of Zhe-jiang Province (No. 2004C31098), and the Postdoctoral Foundation of Zhejiang Province (No. 2004-bsh-023), China
文摘Rough set theory plays an important role in knowledge discovery, but cannot deal with continuous attributes, thus discretization is a problem which we cannot neglect. And discretization of decision systems in rough set theory has some particular characteristics. Consistency must be satisfied and cuts for discretization is expected to be as small as possible. Consistent and minimal discretization problem is NP-complete. In this paper, an immune algorithm for the problem is proposed. The correctness and effectiveness were shown in experiments. The discretization method presented in this paper can also be used as a data pre- treating step for other symbolic knowledge discovery or machine learning methods other than rough set theory.
文摘Discretization based on rough set theory aims to seek the possible minimum number of the cut set without weakening the indiscemibility of the original decision system. Optimization of discretization is an NP-complete problem and the genetic algorithm is an appropriate method to solve it. In order to achieve optimal discretization, first the choice of the initial set of cut set is discussed, because a good initial cut set can enhance the efficiency and quality of the follow-up algorithm. Second, an effective heuristic genetic algorithm for discretization of continuous attributes of the decision table is proposed, which takes the significance of cut dots as heuristic information and introduces a novel operator to maintain the indiscernibility of the original decision system and enhance the local research ability of the algorithm. So the algorithm converges quickly and has global optimizing ability. Finally, the effectiveness of the algorithm is validated through experiment.
文摘Aiming at the disadvantages of BP model in artificial neural networks applied to intelligent fault diagnosis, neural network fault diagnosis optimization method with rough sets and genetic algorithms are presented. The neural network nodes of the input layer can be calculated and simplified through rough sets theory; The neural network nodes of the middle layer are designed through genetic algorithms training; the neural network bottom-up weights and bias are obtained finally through the combination of genetic algorithms and BP algorithms. The analysis in this paper illustrates that the optimization method can improve the performance of the neural network fault diagnosis method greatly.
文摘An intelligent response surface methodology (IRSM) was proposed to achieve the most competitive metal forming products, in which artificial intelligence technologies are introduced into the optimization process. It is used as simple and inexpensive replacement for computationally expensive simulation model. In IRSM, the optimal design space can be reduced greatly without any prior information about function distribution. Also, by identifying the approximation error region, new design points can be supplemented correspondingly to improve the response surface model effectively. The procedure is iterated until the accuracy reaches the desired threshold value. Thus, the global optimization can be performed based on this substitute model. Finally, we present an optimization design example about roll forming of a "U" channel product.
基金This paper is financial aided by the National Natural Science Foundation project in China (No. 70640008), The National Social Science Foundation project in China (No. 05BJY043) and The Foundation Project of Inner Mongolia education office (No. N J02019).
文摘The traditional market segmentation was based on "transcendental rationality" or "Situational Rationality", studies shows that it had disadvantages. This paper states the "Situational" integrated rationality hypothesis and then comes up with the market segmenting models and classification algorithm basing on this hypothesis. This algorithm combined the Rough Set theory and Neural Networks in application, which overcome the dilemma that caused complicated network structure and long training time by only using Neural Networks and influenced the classification precision caused by noise disturbance by only using Rough Set methods. Finally, the paper did a comparison experiment between the traditional method and the method we came up, the results shows that the model and algorithm has its advantage on every aspects.
基金Supported by the Youth Science Foundation of North China University of Water Conservancy and Electric Power(HSQJ2009016)
文摘A new method based on rough set theory and genetic algorithm was proposedto predict the rock burst proneness. Nine influencing factors were first selected, and then,the decision table was set up. Attributes were reduced by genetic algorithm. Rough setwas used to extract the simplified decision rules of rock burst proneness. Taking the practical engineering for example, the rock burst proneness was evaluated and predicted bydecision rules. Comparing the prediction results with the actual results, it shows that theproposed method is feasible and effective.
文摘For garment or fabric appearance, the cloth smoothness grade is one of the most important performance factors in textile and garment community. In this paper, on the base of Rough Set Theory,a new objective method for fabric smoothness grade evaluation was constructed. The objective smoothness grading model took the parameters of 120 AATCC replicas' point-sampled models as the conditional attributes and formed the smoothness grading decision table. Then, NS discretization method and genetic algorithm reduction method were used in the attributes discretization and feature reduction. Finally, the grading model was expressed as simple and intuitional classification rules. The simulation results show the validity of the fabric smoothness grading system which is built on the use of rough sets.
基金Project supported by the National Natural Science Foundation of China(Nos.61473259,61502335,61070074,and60703038)the Zhejiang Provincial Natural Science Foundation(No.Y14F020118)the PEIYANG Young Scholars Program of Tianjin University,China(No.2016XRX-0001)
文摘Interval-valued data appear as a way to represent the uncertainty affecting the observed values. Dealing with interval-valued information systems is helpful to generalize the applications of rough set theory. Attribute reduction is a key issue in analysis of interval-valued data. Existing attribute reduction methods for single-valued data are unsuitable for interval-valued data. So far, there have been few studies on attribute reduction methods for interval-valued data. In this paper, we propose a framework for attribute reduction in interval-valued data from the viewpoint of information theory. Some information theory concepts, including entropy, conditional entropy, and joint entropy, are given in interval-valued information systems. Based on these concepts, we provide an information theory view for attribute reduction in interval-valued information systems. Consequently, attribute reduction algorithms are proposed. Experiments show that the proposed framework is effective for attribute reduction in interval-valued information systems.
基金supported by the National Natural Science Foundation of China under Grant Nos.71271202 and 70801058
文摘Rough set theory is an effective method to feature selection, which has recently fascinated many researchers. The essence of rough set approach to feature selection is to find a subset of the original features. It is, however, an NP-hard problem finding a minimal subset of the features, and it is necessary to investigate effective and efficient heuristic algorithms. This paper presents a novel rough set approach to feature selection based on scatter search metaheuristic. The proposed method, called scatter search rough set attribute reduction (SSAR), is illustrated by 13 well known datasets from UCI machine learning repository. The proposed heuristic strategy is compared with typical attribute reduction methods including genetic algorithm, ant colony, simulated annealing, and Tabu search. Computational results demonstrate that our algorithm can provide efficient solution to find a minimal subset of the features and show promising and competitive performance on the considered datasets.